

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

OPTIMAL PATH PLANNING FOR MULTI-ARM, MULTI-
LINK ROBOTIC MANIPULATORS

by

Joseph A. Cascio

December 2008

 Thesis Advisor: I. M. Ross
 Second Reader: A. D. Scott

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Optimal Path Planning for Multi-Arm, Multi-Link
Robotic Manipulators
6. AUTHOR(S) Joseph A. Cascio

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 This work investigates the problem of robotic arm control with the goal of achieving given performance
requirements by solving for the optimal joint trajectories and corresponding controls for tasks, such as
point-to-point positioning. The resulting optimal control problem is highly nonlinear and constrained due to
the nonlinearities in the robotic arm dynamics and kinodynamic constraints including limits on joint
velocities and actuator torques.
 This thesis illustrates the applicability of pseudospectral methods to solve the optimal path planning
problem for a system of multi-link, multi-degree of freedom robotic arms. The optimal control problem is
defined in standard form and solved using the software package DIDO. Pontryagin’s Minimum Principle is
used to verify that the proposed solution satisfies the necessary conditions for optimality. A particularly
challenging aspect that is explored is the optimal motion of multiple arms conducting independent tasks
with the risk of collision. Collision avoidance can be achieved by modeling appropriate path constraints.
 The processes for optimal trajectory planning are developed for a single two degree-of-freedom
manipulator conducting point-to-point positioning and extended to include dual three degree-of-freedom
manipulator maneuvers employing collision avoidance. The results demonstrate the suitability of
pseudospectral techniques to solving the minimum time and minimum control maneuvers for robotic arms.
The employment of collision avoidance techniques will facilitate continued research in autonomous robotic
motion planning using optimal control criteria in multiple arm systems.

15. NUMBER OF
PAGES

121

14. SUBJECT TERMS Optimal Control, Trajectory Optimization, Path Planning, Robotic
Manipulator, Collision Avoidance, DIDO, Pseudospectral Methods, Autonomous Robotic
Control

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

OPTIMAL PATH PLANNING FOR MULTI-ARM, MULTI-LINK ROBOTIC
MANIPULATORS

Joseph A. Cascio
Lieutenant Commander, United States Navy
B.S., University of Southern California, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2008

Author: Joseph A. Cascio

Approved by: I. M. Ross
Thesis Advisor

A. D. Scott
Second Reader

K. Millsaps
Chairman, Department of Mechanical and Astronautical
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This work investigates the problem of robotic arm control with the goal of

achieving given performance requirements by solving for the optimal joint

trajectories and corresponding controls for tasks, such as point-to-point

positioning. The resulting optimal control problem is highly nonlinear and

constrained due to the nonlinearities in the robotic arm dynamics and

kinodynamic constraints including limits on joint velocities and actuator torques.

This thesis illustrates the applicability of pseudospectral methods to solve

the optimal path planning problem for a system of multi-link, multi-degree of

freedom robotic arms. The optimal control problem is defined in standard form

and solved using the software package DIDO. Pontryagin’s Minimum Principle is

used to verify that the proposed solution satisfies the necessary conditions for

optimality. A particularly challenging aspect that is explored is the optimal motion

of multiple arms conducting independent tasks with the risk of collision. Collision

avoidance can be achieved by modeling appropriate path constraints.

The processes for optimal trajectory planning are developed for a single

two degree-of-freedom manipulator conducting point-to-point positioning and

extended to include dual three degree-of-freedom manipulator maneuvers

employing collision avoidance. The results demonstrate the suitability of

pseudospectral techniques to solving the minimum time and minimum control

maneuvers for robotic arms. The employment of collision avoidance techniques

will facilitate continued research in autonomous robotic motion planning using

optimal control criteria in multiple arm systems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION... 1
B. TRAJECTORY PLANNING ... 3
C. THE COOPERATIVE PLANNING PROBLEM................................... 10
D. A COOPERATIVE CONTROL PROPOSAL 12

II. OPTIMAL TRAJECTORY PLANNING ... 13
A. PROBLEM FORMULATION FOR A 2-DOF MANIPULATOR........... 13

1. Modeling Dynamics and Kinematics.................................... 13
2. Formulation of Optimal Control Problem 16
3. Necessary Conditions ... 17
4. Minimum Time Simulation Set-up and Results 20

B. PROBLEM FORMULATION FOR 3-DOF MANIPULATOR 26
1. Modeling Dynamics and Kinematics.................................... 26
2. Formulation of Optimal Control Problem and Necessary

Conditions.. 28
3. Simulation Results .. 29

C. DUAL ARM TRAJECTORY PLANNING .. 31
1. Problem Formulation... 32
2. Simulation Results .. 33

D. AN ALTERNATE PROBLEM FORMULATION 37

III. OBSTACLE AVOIDANCE.. 41
A. BACKGROUND ... 41

1. Minimum Distance between Two Continuous Lines 41
2. Minimum Distance between Two Line Segments 44

B. STATIC OBSTACLE AVOIDANCE ... 47
1. 2-DOF Case .. 47
2. 3-DOF Case .. 50

C. NUMERICALLY SOLVING THE KKT CONDITIONS 54
1. 2-DOF Case .. 55
2. 3-DOF Case .. 57

IV. COOPERATIVE PLANNING USING PS METHODS 61
A. DUAL 2-DOF MANIPULATORS.. 61
B. DUAL 3-DOF MANIPULATORS.. 66

V. CONCLUSION AND RECOMMENDATIONS... 77

APPENDIX - 2-DOF ARM DYNAMICS COMPUTATION.. 81

LIST OF REFERENCES.. 99

INITIAL DISTRIBUTION LIST ... 103

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Cooperating Robotic Arms in Space: International Space Station
Arm Canadarm2 Transfers Cargo to Endeavor’s Arm April 28, 2001... 2

Figure 2. SUMO Advanced Servicing Spacecraft .. 3

Figure 3. Synoptic Diagram of Optimal Motion Planner for Robotic
Manipulators... 4

Figure 4. Optimal Free Trajectory Planning Problem Methods............................ 7

Figure 5. Cyton Alpha 7D1G 7-DOF Robotic Manipulator 14

Figure 6. Sketch of 2-DOF Robotic Arm Model ... 14

Figure 8. 2-DOF Arm Simulation, Scenario 1 State History............................... 22

Figure 9. 2-DOF Arm Simulation, Scenario 1: Costates and Hamiltonian 23

Figure 10. 2-DOF Arm Simulation, Scenario 2: “-90°” maneuver......................... 24

Figure 11. 2-DOF Arm Simulation, Scenario 2: State History.............................. 24

Figure 12. 2-DOF Arm Simulation, Scenario 2: Control Torque........................... 25

Figure 13. 2 DOF Arm Simulation, Scenario 2: Propagated State Vector. 26

Figure 14. 3 DOF Robotic Arm Configuration.. 27

Figure 15. Single Arm 3 Degree of Freedom (3-DOF) Optimal Time Maneuver.. 30

Figure 16. Single Arm 3-DOF Simulation State Trajectory 30

Figure 17. Single Arm 3-DOF Simulation Control Trajectory 31

Figure 18. Dual Arm 3-DOF Simulation (No Obstacle Avoidance) 34

Figure 19. Dual Arm 3-DOF (No Obstacle Avoidance) Hamiltonian 34

Figure 20. Comparison of Dual Arm Algorithm and Single Arm Algorithm........... 35

Figure 21. Comparison of Dual Arm Algorithm and Single Arm Algorithms
Including Minimum Effort .. 37

Figure 22. 2 Arm, 2-DOF Simulation Using Alternate Problem Formulation........ 39

Figure 23. Comparison of Original and Alternate Problem Formulation 40

Figure 24. 30 Node Hamiltonian Values for Different Problem Formulations 40

Figure 25. Geometric algorithm for minimum distance between line segments... 46

Figure 26. 2-DOF Maneuver Without and With Static Obstacle Avoidance......... 48

Figure 27. 2-DOF Motion with Static Obstacle Avoidance: State and Control
Trajectories... 48

 x

Figure 28. 2-DOF Motion with Static Obstacle Avoidance: Costate and
Hamiltonian Trajectories... 49

Figure 29. 2-DOF Motion with Static Obstacle Avoidance: Distance between
Link and Obstacle (5 cm Buffer) ... 49

Figure 30. 3-DOF Maneuver Without and With Static Obstacle Avoidance: 60
Node Solution... 51

Figure 31. 3-DOF Motion with Static Obstacle Avoidance: State and Control
Trajectories... 51

Figure 32. 3-DOF Motion with Static Obstacle Avoidance: Costates and
Hamiltonian .. 52

Figure 33. 3-DOF Motion with Static Obstacle Avoidance: Distance between
Links and Obstacle ... 52

Figure 34. 3-DOF Motion with Static Obstacle Avoidance: 16 Node Solution 53

Figure 35. Minimum Distance Between Links and Obstacle,16 Node Solution ... 53

Figure 36. 2-DOF Static Obstacle Avoidance: State and Control Trajectories
(KKT Algorithm versus Geometric Algorithm)..................................... 56

Figure 37. 2-DOF Static Obstacle Avoidance: Hamiltonian Values (KKT
Algorithm versus Geometric Algorithm) .. 56

Figure 38. 3-DOF Static Obstacle Avoidance: State and Control Trajectories
(KKT Algorithm versus Geometric Algorithm)..................................... 58

Figure 39. 3-DOF Static Obstacle Avoidance: Hamiltonian Values (KKT
Algorithm versus Geometric Algorithm) .. 58

Figure 40. Minimum Distance Between Links and Obstacle (KKT Algorithm
versus Geometric Algorithm) .. 59

Figure 41. 2-DOF Cooperative Path Planning with No Obstacle Avoidance:
State Trajectory .. 62

Figure 42. 2-DOF Cooperative Path Planning with No Obstacle Avoidance:
Distance between Arms.. 63

Figure 43. Cooperative Path Planning for Dual 2-DOF Arms with 19.5 cm
Minimum Clearance.. 63

Figure 44. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: State Trajectories .. 64

Figure 45. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: Control Trajectories ... 65

Figure 46. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: Hamiltonian Value ... 65

 xi

Figure 47. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: Minimum Distance between Arms............................. 65

Figure 48. 3-DOF Path Planning without Obstacle Avoidance: State
Trajectories... 67

Figure 49. 3-DOF Path Planning without Obstacle Avoidance: Distance
between Links .. 68

Figure 50. Cooperative Path Planning for Dual 3-DOF Arms with 8 cm Buffer.... 69

Figure 51. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: State Trajectories ... 70

Figure 52. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Control Trajectories.. 70

Figure 53. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Costate and Hamiltonian Values 71

Figure 54. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: 1 Plot .. 72

Figure 55. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Distance between Arms ... 72

Figure 56. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Propagated State Values compared with DIDO values . 73

Figure 57. 3-DOF Cooperative Path Planning: State Trajectory (KKT Algorithm
versus Geometric Algorithm) .. 74

Figure 58. 3-DOF Cooperative Path Planning using KKT Algorithm: Costate
Values .. 74

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. 2-DOF Dimensions and Limits.. 15

Table 2. 2-DOF Simulation Initial Conditions.. 21

Table 3. 3-DOF Arm Dimensions ... 27

Table 4. Example Endpoint Conditions for Single 2-DOF Arm with Static
Obstacle Avoidance.. 47

Table 5. Example Endpoint Conditions for Single 3-DOF Arm with Static
Obstacle Avoidance.. 50

Table 6. 2-DOF Cooperative Path Planning Endpoint Conditions 61

Table 7. 3-DOF Cooperative Path Planning Endpoint Conditions 66

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

About a year ago, Professor Michael Ross presented the idea of

formulating an optimal control problem that simultaneously solved the trajectories

of multiple robotic arms without colliding. I of course had no background in

robotics and some background in dynamics, but fresh out of my optimization

courses, my initial reaction was “How hard could that be? Sign me up!” No

sooner had I uttered those words did I realize how wrong I could be. Thank you

Dr. Ross for allowing me the opportunity to think through the numerous road

blocks of problem formulation.

However, it was the individuals in the Guidance, Navigation, and Control

Lab at Naval Postgraduate School whose help allowed me to complete this

thesis. Dr. Pooya Sekhavit provided countless hours of helping me debug my

DIDO code and suggesting ways of improving its performance. Dr. Mark

Karpenko provided background in robotics and computers that I lacked and

formulated the dynamics for the arms. Dr. Qi Gong always managed to have the

answer to the “hard question” and it was his insights on problem formulation led

to the parameter optimization that is the heart of the obstacle avoidance methods

I discuss.

I could not have asked for better classmates in the Space Systems

Engineering curriculum. I learned more over the past 27 months from each of

them than any of my courses. I will not forget you.

And of course my wife Karin and my beautiful daughters Bella, Amy, and

Lily. Thank you for supporting me as I finished my coursework and thesis at

NPS. Daddy is looking forward to being able to play with you again.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

The use of robotic arms has become commonplace in today’s

technological society. These machines accomplish tasks from the mundane to

the miraculous with little regard to how they calculate their motion by the majority

of the populace, after all the motion control of one’s arm is much more

complicated than a simple robotic arm yet it is accomplished with little effort. The

reality is that the mathematical model for robotic motion is highly nonlinear and

not intuitive.

Optimal path planning is the primary means to achieve efficient control of

robotic manipulators in physical space. Methods of achieving optimal control

have been researched extensively over the past half century, but it is only with

the increase in computational power and advanced numerical techniques over

the past decade or so that optimal control can now be realized in a wide variety

of tasks. The field of robotics has historically used some form of optimization to

achieve efficiencies in the motion of systems with the goal of autonomous

operations implied in many endeavors.

Terrestrial applications of robots abound and the economic benefit for

achieving efficiencies in motion cannot be taken lightly and is a driving force

behind many of the previous studies in robotic optimal control [1,2,3]. Even a

small increase in efficiency can have a large effect on throughput. Some of

these applications require a form of autonomous or adaptive path planning, and

the vast majority of them are very specific tasks that are suited to specific

methods of calculating highly accurate trajectories that satisfy specific conditions.

Space applications of robotic manipulators also lend themselves towards

exploring autonomous path planning for a variety of machines. Robot arms have

been used extensively on the Space Shuttle and the International Space Station

(ISS) with increasing levels of complexity. A very good example of the use of

 2

cooperative robotic arms was in April 2001 when the ISS’s Canadarm2 was used

to transfer cargo directly with the shuttle Endeavor’s arm (Figure 1, [4]). While

most of this work was accomplished via manual control, only a little imagination

is necessary to see the usefulness of autonomous control for a system of

cooperating robotic manipulators. The Naval Research Laboratory (NRL) has

been conducting research in participation with the Defense Advanced Research

Project Agency (DARPA) on a program to use a system of robotic arms on an

advanced serving satellite [5]. SUMO, or Spacecraft for the Universal

Modification of Orbits, is a program that is being investigated to integrate

autonomous rendezvous and grappling technologies into a relatively low cost

means of altering a satellite’s orbit. As Figure 2 shows, SUMO is envisioned to

have three seven degree-of-freedom (DOF) robotic arms that will require

advanced motion planning in a cluttered environment to operate safely. The NRL

is developing control algorithms that operate in real time and must satisfy the

non-linear dynamics and constraints of the system. Traditional optimal control

techniques in the presence of obstacles were deemed “unsuitable for real-time”

use due to their speed and complexity.

Figure 1. Cooperating Robotic Arms in Space: International Space Station
Arm Canadarm2 Transfers Cargo to Endeavor’s Arm April 28, 2001 (From [4])

 3

Figure 2. SUMO Advanced Servicing Spacecraft (From [5])

B. TRAJECTORY PLANNING

Traditionally, the study of robotic control has been approached in two

stages or levels (see Figure 3). The first stage is off-line path planning or

trajectory planning. Various methods are utilized to compute a suitable state

trajectory for the robot to achieve the desired task given the physical constraints

on the system. Once that path has been defined, an inner loop controller can be

used in real time to correct the errors in the path of the robot’s actual trajectory

within the tolerance value of the desired path [6,7,8]. Most previous work has

been focused on the path planning problem and defining some form of an

optimal, collision free trajectory. Ideally, the computation of the optimal control

trajectory could take place within a controller and allow a single stage control of

robotic systems. However, computation time required for the path planning

problem typically makes this solution infeasible to implement in real time. Figure

3 diagrams a number of robotic control methods and illustrates the two-level

approach described [3, 8].

 4

Figure 3. Synoptic Diagram of Optimal Motion Planner for Robotic
Manipulators (From [8]).

The problem of trajectory planning can be formulated as a general optimal

control problem that seeks to minimize some cost function (also called an

objective function in some literature). Given the state variables XNx and

UNu , the standard optimal control problem is written in the form:

0

0
0

Minimize (), (), (), (), (), dt

Subect to () (), (),

()

() (), ()

() (), (), ()

ft

f f f

t

L U
f f f f

L U

J t E x t t F t

t t t t

t

t t t t

t t t

x u x u

x f x u

x x

e e x e

h h x u h

 (1)

where J is the cost function, E is the endpoint cost, F is the running cost, f is the

set of equations describing the dynamics of the system, e is the set of endpoint

 5

constraints, and h is the set of path constraints [9]. The most common

optimization problem in robotics is to solve the minimum time problem where the

cost function E=tf . A running cost such as F=uTu is also used to reduce the

control effort. Variations on this basic cost function have been explored in the

literature [2,8,10,11,12,13]. The endpoint constraints define the final state of the

system. The path constraints can include torque and velocity limits on the joints

of the manipulator, geometric limits to the system, criteria for obstacle avoidance,

and path tracking depending on the task. A trajectory is considered feasible,

though not necessarily optimal, if the dynamics, endpoint constraints, and path

constraints are satisfied.

Trajectory planning for robotics typically takes one of two forms: a

decoupled approach, which first finds a feasible path and then optimizes the

control along that path; and a direct trajectory planning approach, which includes

taking kinodynamic constraints of the system to solve an optimal path [7, 8].

These two methods each have merits and drawbacks.

A substantial amount of research has been focused on decoupled

methods by improving the performance of a robotic system given a specified

collision-free path [6,7,8,13,14,15]. These types of trajectories are particularly

useful in tasks that require specific trajectories to accomplish the assigned task.

As an example, [13] presents an algorithm that searches for a time optimal

control trajectory while minimizing the control effort along a specified path. This

formulation is fairly typical of previous methods and useful as a brief illustration.

For a robotic manipulator, the specified path is normally defined by the position

and orientation of the tool being used. The dynamics of the system can be

derived using a number of methods such as the Lagrange–Euler method. The

path is first specified in terms of the generalized joint coordinates and then

written in parametric form using a standard interpolation method. The method of

parameterizing the motion of the robot is complex and not trivial. The path is

scaled and its first, second, and third order derivatives are calculated. The cost

function is then restated in terms of the scaled parametric values and minimized

 6

in terms of the parametric variables, which are compared to the kinematic

constraints of the system to check for feasibility. Reference [13] uses a genetic

algorithm to search for the optimal solution, while reference [10] proposes phase

plane techniques that solve the minimum time problem along a desired path

given in parametric form. Such methods often assume some form of bang-bang

control near the limits of the feasible joint space, which may not be desirable

since the sudden change in manipulator torques can cause damage, or

excessive wear, or excite flexible modes.

When the path is not specified, approaches have been proposed to solve

the global time optimal solution using grid or cell type iterations based on the

decoupled path planning problem method [16, 17]. These are highly involved

and can only be considered to converge to near-optimal trajectories in some

cases [6]. In general, these approaches attempt to optimize every possible path

and are therefore not practical in high dimensional problems.

Robotic manipulators usually consist of multiple links and can achieve an

objective maneuver through multiple paths. Optimization results often produce

surprising results that can be physically explained, but may differ from an intuitive

solution [3]. Full motion planning or direct trajectory planning computes the

optimal solution in the state space of the system and solves an unknown optimal

trajectory of each joint. When the movement of the robot is not specified, these

trajectory methods are more useful than the decoupled path planning algorithms

at minimizing some cost function over the semi-infinite range of possible

trajectories. Many direct trajectory planning techniques have been explored over

the past three decades. Excellent surveys can be found in [6], [8], and [19].

Figure 4 is a useful diagram that summarizes some of the methods used to solve

the trajectory planning problems. These algorithms can be used to solve point-

to-point, or pick-and-place trajectory problems where only the initial and final

positions of the end effector are defined. Path constrained optimization problems

can also be solved. Methods of computing optimal trajectories generally fall

within two categories: direct and indirect [8].

 7

Figure 4. Optimal Free Trajectory Planning Problem Methods (From [8])

Indirect methods are primarily based on Pontryagin’s Minimum Principle

and solving the necessary conditions for optimality [18,19]. Given a standard

problem formulation of the form of Equation (1), the control Hamiltonian is

defined whereH and XNλ is the adjoint covector or costate vector:

 (, , ,) : (, ,) (, ,)TH t F t t λ x u x u λ f x u (2)

Then applying the Lagrange multiplier, N hμ in order to define the Lagrangian

of the Hamiltonian yields:

 (, , , ,) TH t H μ λ x u μ h (3)

 8

Similarly, an end-point Lagrangian is given by

 TE E ν e (4)

where N eν . The lower Hamiltonian, H is the value of the Hamiltonian with

the optimum control profile and is defined as

 (, ,) min (, , ,)
NU

t H t

u

λ x λ x uH (5)

The necessary conditions can then be described by Equations (6)-(10) below [9].

Hamiltonian Minimization Condition: 0
H

u

 (6)

Adjoint Condition:
H

λ
x

 (7)

Transversality Condition:
0

0

()
()

()
()f

f

E
t

t

E
t

t

λ
x

λ
x

 (8)

Hamiltonian Value Condition:
0

0

()

()f
f

E
H t

t

E
H t

t

 (9)

Hamiltonian Evolution Condition:
H

t

H (10)

The optimal trajectory can then be found by solving the multi-point

boundary value problem by a multiple shooting method though convergence to a

solution can be difficult to predict [8]. An excellent survey of indirect methods for

computing the optimal trajectory for robotic manipulators is presented in [19].

The penalty for applying indirect methods to solve the optimal control problem is

the amount of effort required to deriving the necessary conditions, particularly for

complex systems.

 9

The most common method to solving optimal control problems in recent

years is by using direct methods [6,8,15,19]. In general these methods depend

on discretizing the state and control variables and using nonlinear optimization

techniques [15], evolutionary or hierarchical approaches [20,21], or stochastic

methods to optimize the solution. The latter two techniques tend to suffer from

“numerical explosion when treating high dimension problems [8].”

Almost all the methods to solve optimal problems require a level of

discretizing the state and control parameters in some way. Traditional

parameterization is done by uniformly distributing nodes along the time profile

and solving a constrained optimization problem using gradient based nonlinear

optimization techniques such as sequential quadratic programming (SQP). An in

depth approach to treating the optimal control problem via a direct means is

presented in [3] and is representative of nonlinear optimization techniques. An

initial control function is used to provide an initial guess to the algorithm within

the feasible bounds of u. The corresponding state values, x, are then

approximated using a collocation technique that results in a piece-wise trajectory

that satisfies the system dynamics and constraints via a multiple shooting

method. The state and control function can then be parameterized and used to

define the cost function. This results in a large scale nonlinear optimization

problem. A numerical algorithm, such as SQP, which is tailored to the structure

of the problem, is then used.

Regardless of the techniques used to solve the path planning problem, the

direct and indirect methods can be used to complement each other. A candidate

solution can be verified by comparing the results to the necessary conditions for

optimality [22]. A hybrid solution is presented in [2] that uses a direct collocation

approach, which parameterizes the state, and control variables with a poor initial

guess trajectory using the endpoints to interpolate a discreet solution. This is

then used to approximate a nonlinear optimization problem using SQP.

Pontryagin’s necessary conditions are then calculated symbolically based on the

dynamics and constraints of the system. The results of the direct collocation

 10

calculation can then be used as the initial guess to solve the multipoint boundary

value problem. While this method is useful, the calculation of the necessary

conditions are computationally intensive and make solving anything more

complex than a 3-DOF system difficult [2].

Pseudospectral methods have also been proposed to solve the trajectory

planning problem for robotic manipulators [23]. This method differs from

previous direct methods primarily by the discretization method. The Legendre

pseudospectral method approximates the state and control variables using

particular interpolating polynomials. The discretized nodes are non-uniformly

spaced based on Legendre-Gauss-Lobatto point allocation. The Covector

Mapping Theorem allows this method to “make no distinction between the so-

called direct and indirect methods” [22] and lends itself to verification by

application of Pontryagin’s Minimum Principle with the automatic generation of

states, costates, and other dual variables.

C. THE COOPERATIVE PLANNING PROBLEM

Multiple robots working in the same space complicate the path-planning

problem exponentially. There are generally two traditional approaches to

attacking the problem of coordinated movement between multiple robots:

centralized planning and decoupled planning [6]. The latter consists of finding

feasible paths for each robot without regard to the other robots, in other words

disregarding any risk of collision. The robots are then sequenced by adjusting

start times and velocities of the individual arms to avoid potential collisions

[24,25]. This method may be considered attractive from a computational aspect

because the dimensions of the problem are limited to a single robot at a time;

however, the system is not optimized. The former robots become solid obstacles

in the way of the latter’s motion and may shrink their feasible work space to zero.

Cooperation between the robots is unlikely.

Centralized planning computes the trajectory of all elements of the system

simultaneously and effectively treats the system as a single state vector. As the

 11

number of individual robots increase, the dimension of the problem increases

accordingly. When the centralized planning problem is solved, the solution

provides the state and control trajectory for the complete system. While

computation speed may seem a concern in implementing the method on practical

applications, increased computing power and efficient numerical techniques are

allowing centralized planning of more and more complex systems to be plausible.

Obstacle avoidance algorithms rely on measuring the distance between

the objects and including some buffer. A number of methods that maneuver a

point target around an obstacle-rich environment have been previously proposed

[26,27]. Distance functions are used in most algorithms that use geometric

shapes to define the obstacles, most of which compare the set of points for one

obstacle to the set of points in the other obstacle and finding the minimum

distance. This requires some means of discretizing the obstacles and using a

brute force method to compare each point [6,28]. For example using a finite

number of different radii spheres to cover the obstacles and constrain the

minimum distance between spheres [8]. This formulation would define a path

constraint such that at each point in time the minimum distance between the

centers of each sphere is greater than some reference distance.

A variation of this technique was presented in [29] where a distance

function from a set of reference points of each manipulator to the obstacle was

computed.

22 2
[] [][] [] [] []

,
l il i l i
k y k yl i k x k x k z k z

k k k
x y z

M PM P M P
D M P

L L L

where Dk is the distance, l
kM is a set of l= 1,…,n points that describe the contour

of the manipulator arms at time k, i
kP is a set of points that describe the center of

each obstacle, i, at time k, and Lj describes the obstacle size in each direction.

The cost function can then include the term JD where 0
DJ is a reference distance:

 12

0...

0

max min kk N
D

D

D
J

J

A collision, in theory, would make JD=0 which is the maximum value in this

formulation. A collision free path, assuming the function is properly scaled,

would have a lower cost than a path with a collision. However, there is no

guarantee that the system will avoid a collision.

D. A COOPERATIVE CONTROL PROPOSAL

Optimal cooperative path planning consists of simultaneously solving

trajectories for multiple robotic arms while meeting all obstacle avoidance criteria.

Rather than discretizing the links of an arm and solving the avoidance problem in

the work space, this thesis proposes reformulating the minimum distance

problem in a parametric form and solving a parameterized optimization problem.

Pseudospectral optimal control formulations readily lend itself to solving such

problems.

Using the software program DIDO, pseudospectral methods are used to

solve the optimal minimum-time trajectory for 2-DOF and 3-DOF robotic

manipulators conducting point-to-point maneuvers where the initial point is given

in joint coordinates and the final point in Cartesian coordinates. The computed

state, costate, and control trajectories facilitate verifying Pontryagin’s necessary

conditions for optimality. The calculated control trajectory is then propagated to

demonstrate feasibility. Building on these results, dual manipulator solutions are

analyzed and presented using variations of cost functions. Finally, two methods

of formulating obstacle avoidance criteria are presented and compared in various

scenarios. A static obstacle avoidance formulation is first illustrated followed by

a system of two multiple link arms performing a simple pick-and-place operation.

 13

II. OPTIMAL TRAJECTORY PLANNING

Pseudospectral (PS) methods have been used to solve a variety of

trajectory planning and optimal control problems as shown in [27,30,31,32,33].

PS methods have been flight tested onboard the International Space Station, and

other flight experiments are in the planning stages. Given their widespread

applicability, it should be no surprise that the manipulator path planning problem

is a logical application of these techniques. Motion planning for time-optimal

point-to-point maneuvers in a pick-and-place operation is considered here. The

optimal control formulation incorporates realistic constraints on the joint velocities

and accelerations as well as bounds on actuator torque to ensure the solution

trajectories are physically realizable. The efficacy of PS optimal control

techniques is demonstrated via simulation. The first analysis considers a simple

two link, two degree of freedom (2-DOF), three-dimensional motion of an arm

with a full development of kinematics, dynamics, constraints, and Pontryagin’s

necessary conditions [18]. The second analysis uses the same principles to

develop trajectories for a single three link, 3-DOF manipulator.

A. PROBLEM FORMULATION FOR A 2-DOF MANIPULATOR

The robotic arms used throughout this study are based on the Cyton

Alpha 7D1G from Robai. While not exact, the model assumes homogenous rigid

arms and perfect actuators. Dynamics that are more complex can be

incorporated into the problem formulation with the same techniques

demonstrated below used to formulate the optimal control problem.

1. Modeling Dynamics and Kinematics

The Cyton Alpha is a seven degrees of freedom manipulator with an end

effector as pictured in Figure 5 [34]. Specific joints can be locked to simulate

fewer degrees of freedom. The first problem formulated is a three dimensional

motion of a 2-DOF arm as sketched in Figure 6 where ai is the offset in the local

 14

x coordinate system and di is the offset in the local z direction. θ1 is the angle of

rotation of the base and θ2 is the angle of the arm with respect to horizontal.

Based on the Cyton Alpha specifications, limits were placed on the motor torque

for each joint, τimax and the maximum angular velocity, ωimax. Initial discrepancies

between the model dynamics and the actual arm in the laboratory required

angular acceleration limits, αimax in order to increase the accuracy of the results.

Link 1, the base unit, is modeled as a homogeneous cylinder and the arm is

modeled as a thin rod.

Figure 5. Cyton Alpha 7D1G 7-DOF Robotic Manipulator (From [34])

Figure 6. Sketch of 2-DOF Robotic Arm Model

 15

Link 1 (Base) Link 2 (Arm)
a1 0.00 m a2 0.48 m
d1 0.15 m d2 0.02 m
m1 0.150 kg m2 0.385 kg
τ1max
ω1max

α1max

2.4 N m
7.5 rad/sec
7.5 rad/sec2

τ2max
ω2max

α2max

2.9 N m
7.5 rad/sec
10 rad/sec2

Table 1. 2-DOF Dimensions and Limits

It is usually desirable to map the position of the end effector from joint

coordinates to a Cartesian coordinate system. The origin for the coordinate

system is the center of the base. A Denavit-Hartenberg homogenous transfer

matrix was used to characterize the kinematics of the robotic arm. Using planar

rotations and linear displacements Equations (11) and (12) explicitly define the

end effector position.

1 1 1 2 2 2

1 1 2

1 2 2

cos sin 0 cos 0 sin

sin cos 0 0 1 0 0

0 0 1 sin 0 cos 0

e

e

e

x a a

y d

z d

 (11)

1 1 2 1 2 1 2

1 1 2 2 2 1 2

1 2 2

cos sin cos cos

sin cos sin cos

sin

e

e

e

x a d a

y a d a

z d a

 (12)

While this is the method employed almost universally and will be used

throughout this work, other means of deriving the kinematics are available and

may prove to be better suited to solving the optimal control problem. Reference

[15] has suggested the use of Lie groups and Lie algebras to formulate the

kinematics and subsequent dynamics of the system.

The dynamics of the robotic arm were calculated using a Lagrangian

formulation of the equations of motion [7,35,36]. The general equation of motion

takes the form

 () () ()D C gq q q,q q q Q (13)

 16

where q is the vector of generalized coordinates (θ1 and θ2 in this case), D is a

positive definite inertia matrix, C is the velocity coupling vector, g is the

gravitation force vector, and Q is the generalized force vector or the joint torques,

1 and 2 in this case. The algorithm presented in [35] was used to develop the

general equations for this model symbolically using the software program Maple

and is presented in the appendix. Using the values from Figure 6, Equation (13)

was solved and is shown to three significant figures for the 2-DOF three-

dimensional model in Equation (14).

2 2 1

2 2

2
11 2 2 2 2

2
2 21 2

0.0128 0.0126cos2 0.00183sin2

0.00183sin2 0.0291

00.0291 sin2 0.00183 cos
 +

0.899cos0.0146 sin2

(14)

2. Formulation of Optimal Control Problem

The dynamics formulated above are the basis for the optimal control

problem formulation shown in Equation set (15). Let x be the state vector and u

the control vector. The cost function, J, was chosen to minimize the time of the

maneuver based on the constraints of the system. Other cost functions can be

developed to minimize the control effort (such as a quadratic cost), energy, or

some combination of elements. e is the endpoint function where the initial angles

0 and the final endpoint coordinates [xf, yf, zf] are given by solving Equation (12)

for a feasible 1 and 2. In addition, let h be defined as the path constraints on

the function that in this case is simply the angle, angular velocity, and torque

limits.

 17

1 1 1

2 1 12 2
1 2

1 2 21 1

2 2 2

: 90 90

: 2.4 2.4: 45 135
: :

: 2.9 2.9: 7.5 7.5

: 7.5 7.5

T
X U

x u

11

22

11

22

0
1
0
2

0

Minimize (), (),

Subject to: () where ()

 ()
0

0

 (,

f f
u

i

f

J t t

t f

t

x u

x x,u

x

e x

1 1 2 1 2 1 2

1 1 2 2 2 1 2

1 2 2

1

2

cos sin cos cos

sin cos sin cos

) sin

 (,)

f

f

f
f

f

f

L U

L U

a d a x

a d a y

t d a z 0

x x
h x u

u u

(15)

3. Necessary Conditions

To be optimal, the solution must satisfy Pontryagin’s necessary conditions.

Define the Hamiltonian, H as a function of running cost, F, the vector of costates,

λ(t), and the right-hand side of the dynamics, () (, ,)t f x u tx :

 (, , ,) : ; NTH t F Xλ x u λ f λ

1 2 1 21 2 1 2H (16)

The path constraints must be taken into account as well. For the simplest

2 DOF problem the constraints are the limits of the control and state vectors

 18

defined in Equation set (1515). Equation (17) defines the Lagrangian of the

Hamiltonian, H .

1 2 1 1 2 2 1 2 1 21 2 1 2 1 2 1 2

: ;

() ()

hNTH H

H

μ h μ

(17)

Similarly, the Equation (18) defines the Endpoint Lagrangian, E where E

is the endpoint cost:

0 0

0

(, , , ,) : ; NT
f f

T T
xf f yf f zf f

E t t E

E x y z

e

x ω

x x ν ν e ν

ν x ν ω
 (18)

Pontryagin’s necessary conditions are defined in Equations (19) – (23).

The Hamiltonian Minimization Condition (HMC) requires 0
H

u

.

1 2 1

1 2 2

1 2

1 1 1

1 2

2 22

H

H

Hu

1 2

1

1 2

2

2

2 2

2
2 2

14600 917sin

[]
917sin (7390 7280cos2)

214 212cos2 1.68cos

H Den Den

Den Den

Den

0
u (19)

The adjoint condition requires
H

λ
x

 .

 19

1 2 1

1 2 2

1 1 1 2

2 2 1 2

1 2

1 1 1

1 2

2 2 2

1 2

1 11

1 2

2 22

()

()

H

H

H

H

λ

1 1 2 2 2

1 1 1

2

2 2

2 2 2 1
2 2

2 2

2 2 2 1 1 2
2

1 2

2 2

2
2 2

sin(2)(252 15.9sin())

127 126cos(2) cos

sin(2)(15.9sin() 128 126 cos2)

127 126cos(2) co

0

() ()

()

 +

()

s

λ

1

2

2 2 2 1
2 2

2 2

2 2 1 2 2
2 2

2 2

sin(2)(252 15.9sin())

127 126cos(2) cos

sin()(15.9sin(2) 2cos(

))

127 126cos(2) cos
 +

 (20)

It is valuable to note that λ1 is constant and can be used to verify the

optimality conditions. The transversality condition requires

()f

f

E
t

λ
x and

0
0

()
E

t

λ
x

1

2

0

1 1 1

2 2 2

()

()

f f f
xf xy zf

f f f
xf xy zff

t

x y z

x y z
t

xλ ν

λ

 20

1

2

1 2 1

1 2 1

1 2

1 2 2

(0.476sin cos 0.02cos)

 (0.476cos cos 0.02sin)

(0.476sin sin)
()

 (0.476sin sin) (0.476sin)

xf

xy

xf

f
xy zf

tλ (21)

The Hamiltonian Value Condition requires:

 () 1f
f

E
H t

t

 (22)

Finally, the Hamiltonian Evolution Equation requires that the optimal

control trajectory satisfies Equation (23).

 0
H

H
t

 (23)

The above necessary conditions provide two useful checks for optimality.

The Hamiltonian can be analyzed for optimality and should be a constant -1 for

all time and λ1 is constant.

4. Minimum Time Simulation Set-up and Results

The three-dimensional 2-DOF robotic arm is used to demonstrate the

applicability of using pseudospectral techniques to solve the time-optimal

trajectories with various endpoint conditions using the software package DIDO.

Two trajectories are presented below. To ensure that the endpoint coordinates

are reachable within the state bounds, feasible initial and final angles were first

selected. The final angles were then mapped to the corresponding final

manipulator endpoints using Equation (12). The assumption in this the simplest

case is that the final orientation of the manipulator is not a constraint on the

system, only that it is at the correct position. It is important to note than even in

the 2-DOF system, a given set of joint angles produces a unique point in space,

but the reverse is not necessarily true. A point in space may have multiple

 21

solutions in joint space and choosing specific final angles to ensure the feasibility

of the maneuver does not guarantee that those angles would be the optimal final

state.

To obtain the optimal solution, DIDO was run in normal mode using a

bootstrapping technique. The initial run was calculated using a 16 node solution

that in turn was used as a guess for a 30 node solution that in turn was used as

an initial guess for a 60 node solution. It was found that 60 nodes were sufficient

to properly propagate the system using a differential solver such as ODE45 and

using the linearly interpolated values of the discrete control trajectory.

Table 2 lists the initial conditions used for two scenarios. The final angles

were used to calculate the final endpoint constraints. Scenario 1 consisted of a

positive 90° rotation about the base of the arm with the initial and final angle of

the second link at 45°. Figure 7 shows the optimal trajectory results of that run.

As shown, the time-optimal maneuver was calculated to be a simple rotation

about the base. Figure 7 - Figure 9 plot the results for analysis. As shown, H=-1

and λθ1 is constant as required by Equations (23) and (20). The minimum time

maneuver completes in 0.92 seconds for this problem formulation.

2-DOF Simulation Scenario 1 2-DOF Simulation Scenario 2

0
1

0
2

0

45

 1

2

90

45

f

f

0.020

0.337

0.483

f

f

f

x

y

z

0
1

0
2

0

45

 1

2

90

45

f

f

0.020

0.337

0.483

f

f

f

x

y

z

Table 2. 2-DOF Simulation Initial Conditions

 22

-0.2
0

0.2
0.4

-0.5

0

0.5
0

0.1

0.2

0.3

0.4

0.5

XY

Z
 = 0
 = 45°

xf = 0.020 m
yf = 0.337 m
zf = 0.483 m

Figure 7. 2 DOF arm simulation, Scenario 1: 90° maneuver.

0 0.2 0.4 0.6 0.8 1

-1

0

1

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8 1

-5

0

5

A
n

g
u

la
r

R
a

te
s

[r
a

d
/s

]

1

2

1

2

Figure 8. 2-DOF Arm Simulation, Scenario 1 State History

 23

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

C
o

st
a

te
s

1

2

1

2

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

time [sec]

H
a

m
ilt

o
n

ia
n

 V
a

lu
e

H

Figure 9. 2-DOF Arm Simulation, Scenario 1: Costates and Hamiltonian

Scenario 2 was designed as a similar maneuver with the arm rotating -90°

about the base. Again, the final coordinates of the manipulator end effector were

calculated using Equation (11). The results were quite different than the previous

scenario as shown in Figure 10 with a maneuver time of 0.880 seconds. Figure

11 shows that the final base angle, θ1, is not -90° as expected but rather 83.2°

(1.45 radians) and the arm elevation, θ2, is 135°. No assumptions were made as

to the trajectory of the arm and it became obvious that the endpoint coordinates

could be achieved in two ways and solving the reverse kinematics problem

shows this. The pseudospectral solver solved the solution that required the

minimum time to accomplish, which in this case was a rotation of 83.2° vice a

rotation of 90° due to the offset of the arm from the centerline of the base.

 24

-0.2

0

0.2

0.4

-0.5
0

0.5
0

0.1

0.2

0.3

0.4

0.5

X
Y

Z
= 0
= 45°

xf = ‐0.020 m
yf = ‐0.337 m
zf = 0.483 m

Figure 10. 2-DOF Arm Simulation, Scenario 2: “-90°” maneuver.

0 0.2 0.4 0.6 0.8 1

-2

0

2

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8 1

-5

0

5

A
n

g
u

la
r

R
a

te
s

[ra
d

/s
]

1

2

1

2

Figure 11. 2-DOF Arm Simulation, Scenario 2: State History

 25

The control torques on both joint actuators were indirectly constrained in

the simulation by an added constraint on the angular acceleration based on

empirical performance characteristics measured on a physical arm.

Nevertheless, the pseudospectral solver produced a control that resembles a

bang-bang control for both actuators as shown in Figure 12. However, the

torque required to rotate the base was noticeably smaller. The momentum of the

arm in combination with the small base torque, was sufficient to rotate the arm

the 83.2° required to complete the maneuver.

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

time

C
o

n
tr

o
l t

o
rq

u
e

 [N
 m

]

1

2

Figure 12. 2-DOF Arm Simulation, Scenario 2: Control Torque

To ensure the feasibility of the trajectory, the control torque was

interpolated using a basic linear interpolation function in Matlab and propagated

using the same dynamic equations (14) and the ODE45 function at 20 Hz

intervals (the minimum sampling rate of the arm). The results are plotted in

Figure 13 with the propagated angles and angular velocities overlaid every 0.05

seconds on the DIDO solution.

 26

0 0.2 0.4 0.6 0.8 1

-2

0

2

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8 1

-5

0

5

A
n

g
u

la
r

R
a

te
s

[r
a

d
/s

]

1

2

1

2

Figure 13. 2 DOF Arm Simulation, Scenario 2: Propagated State Vector.

While relatively simple dynamics were used in the above problem

formulation, the method can be used on more complex dynamics that include

actuator characteristics and non-rigid links [37]. The PS methods implemented

by DIDO would refine the optimal solution as the accuracy of the model

increases.

B. PROBLEM FORMULATION FOR 3-DOF MANIPULATOR

1. Modeling Dynamics and Kinematics

The Cyton Alpha arm was also modeled as a 3-DOF manipulator. Figure

14 is a sketch of the configuration used in deriving the equations of motion. The

angle of the bottom link was locked at 45°. Maple was used to map the joint

positions and end-effector position from link coordinates to Cartesian coordinates

similar to the 2-DOF case above. Equation (24) defines the positions of the arm

end-effector as functions of θi. For the purposes of this simulation, the two free

 27

links have dimensions given in Table 3 and are joined by simple revolute joints

with the angular limits defined by Equation set (25). The Equations of motion for

this model were developed using the algorithm presented in [35] in form of

Equation (13) using Maple.

Figure 14. 3 DOF Robotic Arm Configuration

Link 1 (Base+Arm 1) Link 2 Link 3
a1 0.115 m a2 0.170 m a3 0.140 m
d1 0.270 m d2 0.020 m d3 0.010 m
m1 0.375 kg m2 0.100 kg m3 0.110 kg

Table 3. 3-DOF Arm Dimensions

1 1 2 3 1 2 1 2 3 1 2 3

1 1 2 3 1 2 1 2 3 1 2 3

1 2 2 3 2 3

cos sin cos cos cos cos()

sin cos sin cos sin cos()

sin sin()

e

e

e

x a d d a a

y a d d a a

z d a a

 (24)

 28

2. Formulation of Optimal Control Problem and Necessary
Conditions

The optimal control problem builds on the previous 2-DOF example. With

the state and control variables, x and u respectively, defined below, the minimum

time problem formulation is shown in Equation set (25). The θi and i limits were

defined in the Cyton documentation. In order for the links to be kept rigid by

intermediate motors, angular acceleration limits, αi were imposed on the system

based on actual tests conducted on the arm. It is important to note that
i i in

the inertial reference frame. While not ideal, the above described formulation is

to demonstrate the feasibility of the pseudospectral methods and an exact model

was deemed beyond the scope of this investigation.

1 1 1

2 2 2
1 1 1

3 3 3
2 2

1 1 1
3

2 2 2

3 3 3

: 90 90

: 40 130
: 2.4 2.4

: 85 85
: : : 2.

: 7.5 7.5

: 7.5 7.5

: 5.8 5.8

X Ux u

2

3 3

9 2.9

: 0.5 0.5

11

22

33

11

22

33

0 0 0
0 1 2 3

Min (), (),

Subject to: where (,)

 () 0 0 0

f f
u

i

T

J t t

f

t

x u

x x u

x

 (25)

 29

1

2

3

1

2

3

 (,)

10 10

 (,) where 7.5 7.5

7.5 7.5

f
e

f
e

f
e

f f f

f

f

L U

L U

L U

x x

y y

z z
te x 0

x x

u h x u u

α α

Just as in the 2-DOF problem, Pontryagin’s necessary conditions for

optimality were derived for the 3-DOF arm. These conditions are similar in form

to Equations (16) - (23). The only two useful results of the necessary condition

analysis are that the H=-1 for all time, t and λθ1 is constant.

3. Simulation Results

A number of simulations using this problem formulation were conducted

using DIDO. For each simulation, the initial angles and the final manipulator

coordinates were defined. The final position of the robotic end-effector was

chosen such that the final joint angles were at their upper limits. Figure 15

shows the results. Just as they were calculated in the 2-DOF model, the

manipulator coordinates were calculated using Equation (24) given a set of

feasible joint angles. The results are similar to those from the 2-DOF problem.

Figure 16 and Figure 17 show the computed state and control trajectories for this

problem.

 30

-0.5

0

0.5 -0.5
0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

YX

Z
0

1

0
2

0
3

0 0.03

0 0.11

0 0.32

f

f

f

x

y

z

Figure 15. Single Arm 3 Degree of Freedom (3-DOF) Optimal Time Maneuver

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

A
ng

le
s

[r
ad

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

0

2

4

i [

ra
d/

se
c]

Time [sec]

1

2

3

1

2

3

Figure 16. Single Arm 3-DOF Simulation State Trajectory

 31

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.4

-0.2

0

0.2

0.4

0.6

Time [sec]

T
oq

ue
 [

N
 m

]

1

2

3

Figure 17. Single Arm 3-DOF Simulation Control Trajectory

The increase in complexity from the 2-DOF to 3-DOF problem is evident

from the time duration of the pseudospectral calculations. The runtime for the 2-

DOF problem averaged a few seconds, while the 3-DOF problem took about one

minute. More importantly was that DIDO required an initial guess for some of the

endpoint conditions in order to find a feasible solution. For this problem, a two

point guess was used with the initial and final angles and a final time of 2

seconds. The angular velocity and control torque were assumed to be 0 for the

guess. DIDO was able to solve the optimal control problem and find a feasible

solution. Future versions of DIDO will incorporate more advanced guess-free

algorithms such as those discussed in [38] that may alleviate this requirement.

C. DUAL ARM TRAJECTORY PLANNING

The ultimate goal of this investigation is the simultaneous path planning of

multiple robotic manipulators. As such, the next step taken was to formulate the

minimum time problem using two arms and analyze the results. Below is the 3-

DOF problem formulation with simulation results from both 2-DOF and 3-DOF

arms. No attempt was made to avoid arm interference, but only to demonstrate

the ability for pseudospectral methods to calculate dual arm trajectories and

compare to single arm trajectories.

 32

1. Problem Formulation

The dynamics and endpoints of the multi-arm problem are formulated

similarly to the single arm problem. The dual arm formulation is presented below

for the 3-DOF robotic motion case. In this case, the arms are identical copies of

each other, but this does not need to be the case. Equation Set (26) defines the

endpoint coordinates for each arm a and b. Arm b is offset from arm a and the

origin by the vector 0 0 0[, ,]b b b Tx y z .

1 1 2 3 1 2 1 2 3 1 2 3

1 1 2 3 1 2 1 2 3 1 2 3

1 2 2 3 2 3

0 1 1 2 3 1 2 1 2 3

cos sin cos cos cos cos()

sin cos sin cos sin cos()

sin sin()

cos sin cos cos cos

a a a a a a a a
e

a a a a a a a a
e

a a a a
e

b b b b b b
e

x a d d a a

y a d d a a

z d a a

x x a d d a a

1 2 3

0 1 1 2 3 1 2 1 2 3 1 2 3

1 2 2 3 2 3

cos()

sin cos sin cos sin cos()

sin sin()

b b b

b b b b b b b b b
e

b b b b
e

y y a d d a a

z d a a

(26)

Equation sets (27) and (28) show that the dynamics of the problem are

completely uncoupled in its formulation.

1

2

3

1 1 1 1

2 2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1

2

3

: 90 90

: 40 130

: 85 85
:

: 7.5 7.5

: 7.5 7.5

: 5.8 5.8

a

a

a

b a

b a

b

a

a

a

b

b

b

Xx u

1 1

3
2 2

1
3 3

2

3

: 2.4 2.4

: : 2.9 2.9

: 0.5 0.5

a

b

b

b

U (27)

The optimal control problem is now defined as follows:

 33

0 0 0 0 0 0
0 1 2 3 1 2 3

Minimize (), (),

Subject to: () where (, ,)

 () 0 0 0 0 0 0

 (

f f
u

a a

bb
i i i i

aa

bb

Ta a a b b b

J t t

t f

t

x u

θ ω

ωθx α θ ω τ
αω
αω

x

e

1 1

2 2

3

1

2

3

 (,)

,)
10 10

 where 7.5 7.

a af
e
a af
e
a af
e L U
b bf
e

L U
b af
e

L U
b bf
e

f f af i

af i

af

bf

bf

bf

x x

y y

z z

x x

y y

z z
t

x x

u h x u u

α α
x 0

3

5

7.5 7.5i

(28)

2. Simulation Results

Adding the second arm increases the complexity of the problem and for

some endpoint conditions, a simple two-point guess was required for DIDO to

converge to a solution. A bootstrapping technique was used with a 16 node

solution being calculated then used as a guess for a 30 node and then a 60 node

solution. The second arm was offset from the origin by 30 cm in the –y direction.

Figure 18 plots the simulation results for the two arms with the given endpoint

conditions. Figure 19 plots the Hamiltonian for the system and verifies the

necessary Hamiltonian Value Condition.

 34

-0.2 -0.1 0 0.1 0.2 0.3 0.4-0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

X

Z

Y

10 10

20 20

30 30

45 90

130 0

85 0

a b

a b

a b

0.425 0.425

0.030 0.330

0.270 0.270

a b
f f

a b
f f
a b
f f

x x

y y

z z

Figure 18. Dual Arm 3-DOF Simulation (No Obstacle Avoidance)

0 0.2 0.4 0.6 0.8 1 1.1
-2

-1.5

-1

-0.5

0

Time [sec]

H
a

m
ilt

o
n

ia
n

 V
a

lu
e

Figure 19. Dual Arm 3-DOF (No Obstacle Avoidance) Hamiltonian

These results were derived using minimum time as the cost function.

While all the joint angles are coupled, generally there is a joint that limits the

minimum time, in this case 2 for arm A and 1 for arm B. In addition, one arm

will limit the minimum time of the entire multi-arm system. It is important to note

that the minimum time for the system to complete the maneuver is dictated by

 35

the arm whose time-optimal maneuver takes longer to complete. The trajectory

of the other arms and joints will technically meet the minimum time condition

regardless of the path it takes so long as it arrives at its endpoint conditions at tf.

Figure 20 plots the differences that can occur between the dual arm and

single arm minimum time maneuvers. The solid lines in the figures are the single

arm solutions and the dashed lines are from the dual arm system. The minimum

time defining joint 2 for arm A is nearly identical for both the single and dual arm

algorithms. The other joints, while not following exactly the same trajectory, did

find the same minimum time route to the endpoint. Arm B, which took 0.92

seconds to complete its maneuver in the single arm computation follows a similar

path in the dual arm algorithm, but at a slower rate.

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2

2.5
Arm A angles

Time [sec]

A
n

g
le

 [r
a

d
]

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2
Arm B angles

Time [sec]

A
n

g
le

 [r
a

d
]

t
f
 = .92 sec

t
f
 = 1.1 sec

Figure 20. Comparison of Dual Arm Algorithm and Single Arm Algorithm

While technically the results are time-optimal, there is no measure of

efficiency in the computation of the angles of arms that are not limited by the

system minimum time. A good example is the oscillations in arm B’s 1 and in

the dual arm algorithm. One remedy is to solve for the optimal trajectory in two

-- Single Arm Algorithm
o Dual Arm Algorithm

-- Single Arm Algorithm
o Dual Arm Algorithm

 36

steps. First, solve the minimum time problem, then use that minimum time to

bound the horizon of the problem and solve a minimum energy or quadratic

problem among the various possible minimum time trajectories. Another solution

is to add some measurement of efficiency such as a minimum energy or

minimum control to the cost function to find a minimum time solution that also

maximizes the efficiency of the system. The modified cost function could take

the form of Equation (29) where [A] is a diagonal matrix of weighting factors.

Assuming tf is sufficiently large compared to the running cost, the minimum time

solution can be found while simultaneously maximizing the efficiency of the

solution.

 A
0

ft
T

fJ t u u (29)

The results of rerunning the same endpoint conditions using Equation (29)

as the cost function with unity weighting are presented in Figure 21. A number of

conclusions can be made from this plot. First, it illustrates that there are multiple

minimum time paths, particularly for those joints that do not limit the minimum

time. The final time using the new cost function is the same to within 10-3 second

while decreasing quadratic control cost by 26.3%. This improvement factor was

found by numerically integrating the calculated control vector of the two

scenarios. In addition, these results demonstrate the effect of gravity on the

system. In Figure 20, arm B’s second and third links remain nearly parallel as θ2

and θ3 remain at nearly 0 throughout the maneuver. However, including the

quadratic cost demonstrates that the minimum control torque required to

complete the maneuver is not the parallel motion. θ2 and θ3 in Figure 21 actually

drop below parallel to minimize the total control torque over the course of the

maneuver.

 37

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2

2.5
Arm A angles

Time [sec]

A
n
g
le

 [r
a
d
]

0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5

2
Arm B angles

Time [sec]

A
n
g
le

 [r
a
d
]

t
f
=1.1 sec

t
f
=0.92 sec

Figure 21. Comparison of Dual Arm Algorithm and Single Arm Algorithms
Including Minimum Effort

Changing the cost function, J, to Equation (29), does alter some of the

necessary conditions, but does not change the two useful conditions used in this

analysis to check for optimality: H(t)=-1 and λ1=constant. What it also does not

do is simultaneously find minimum time solution for the arm that does not limit

the minimum time for the system. A viable solution for this using pseudospectral

methods is not presented here but poses an interesting path for future research.

D. AN ALTERNATE PROBLEM FORMULATION

While the standard problem formulation used above finds an optimal

solution, there are other ways of formulating this optimization problem. One such

alternate method that was investigated was to reformulate the problem statement

by eliminating all trigonometric functions. Rather than defining the state variables

in terms of θi and ωi, let the state variables be defined by the sine and cosine of

the angles. While this increases the dimension of the state variables, there are

 38

no trigonometric functions in the dynamics which may be computationally

advantageous . The state x, control u and dynamics x for each arm are defined

for the 2-DOF problem as

1

1

2

2

1

2

1

2

S

C

S

C
x u

11

11

22

22

11

11

22

22

11

22

(,)

(,)

CC

SS

CC

SS
x

x u

x u

Because the states are no longer angles, the following additional path

constraints are required on the system:

1 1

2 2

2 2

2 2

1 0

1 0

C S

C S

The bounds on the states based on the physical limitations of the system must

also be reformulated:

1

2

1
2

0 1 2 2
 2 22

1 1 1 2

C
C

S S

The endpoints must also be redefined by the new state variables:

1 1 2 2

1 1 2 2

1 1 2 2

1

1

2

2

sin , , ,
cos

 , , , 0
sin

, , ,cos

i f f f f
f

i
f f f f

i f f i fi

f f f fi
f

x C S C S

y C S C S

z C S C S

e e ω ω

Using the same endpoint conditions in section 2-A, the alternate problem

formulation was solved using Equation (29) as the cost function in DIDO.

 39

Regardless of cost function, tf = 0.92 seconds which corresponds to the minimum

time solution of the +90° rotation from scenario 1 above. Figure 22 illustrates the

calculated system trajectory.

-0.2

0

0.2

0.4

-0.5
0

0.5
1

0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

Z

tf = 0.92 sec

Figure 22. 2 Arm, 2-DOF Simulation Using Alternate Problem Formulation

This result shows that other proper problem formulations will result in the

same trajectory as the original problem formulation. Figure 23 compares the

calculated joint angle trajectories for the two problem formulations. It is apparent

that regardless of the problem formulation, DIDO computed a very similar

solution. However, there are preferred formulations for numerical computation

efficiency. Figure 24 demonstrares that the original problem formulation, for this

particular model, is better scaled and can be solved an order of magnitude faster.

 40

0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Time [sec]

A
n

g
le

 [r
a

d
]

Arm A

0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Time [sec]

Arm B

Figure 23. Comparison of Original and Alternate Problem Formulation

0 0.2 0.4 0.6 0.8
-2

-1.5

-1

-0.5

0

Time [sec]

H
a
m

ilt
o
n
ia

n
 V

a
lu

e

0 0.2 0.4 0.6 0.8
-2

-1.5

-1

-0.5

0

Time [sec]

H
am

ilt
on

ia
n

V
al

ue

Original Problem Formulation
Computation time: 4.92 sec

Alternate Problem Formulation
Computation time: 64.16 sec

Figure 24. 30 Node Hamiltonian Values for Different Problem Formulations

 41

III. OBSTACLE AVOIDANCE

A. BACKGROUND

Of major importance in robotic trajectory planning is solving the obstacle

avoidance problem. In the most simplistic terms, the issue is one of determining

the distance between each arm and any potential obstacle. A number of studies

have been published on obstacle avoidance in motion planning of robotic

vehicles [1, 12, 28 ,39, 40] where the obstacle is mathematically modeled as an

enclosed polygon with the vehicle as a point in space and time. A path constraint

that restricts the point from entering the polygon by a sufficient buffer ensures

collision avoidance is included in the algorithm. While this is useful in a number

of autonomous motion planning problems, it does not account for a set of

continuous points such as arms of finite length. A different path constraint

formulation is required.

In the most general sense, each manipulator link and obstacle can be

modeled as some rigid geometric shape and the minimum distance between

each link and each potential collision must be calculated at each point in time.

Solving the obstacle avoidance problem for a continuous set of points rather than

a discrete point in space and time complicates the problem. In the simplest case,

each link of each arm can be modeled as a line segment. The minimum distance

between every two links that have the potential to collide must be computed at

each time and incorporated into the path constraint. The optimal control problem

increases in complexity, but pseudospectral methods can still be used to solve

the trajectory with this path constraint and a given minimum distance between

links.

1. Minimum Distance between Two Continuous Lines

Before discussing the obstacle avoidance algorithm, it is necessary to first

determine the minimum distance between two static arms. Each link is modeled

 42

as a line segment using the parametric equations of a line in 3 . Define p1 and

p2 as the two endpoints of an individual line segment:

1 2

1 1 2 2

1 2

x x

y y

z z

p p

p p

p p

p p

These values are then used to define the following values for lines a and b:

0

0 b

1
a

1

a p

b p and

2 1

2 1

a a

b b

a p p

b p p

The equations for two links modeled as a line segment where t and s are

parametric variables take the form:

0

0

 t [0,1]

 s [0,1]

t

s

a a a

b b b
 (30)

For any two values for t and s, the distance between the vectors a and b is the

norm of the vector difference between them.

1
2

0 0 0 02

T
d t s t s

a b a a b b a a b b (31)

It is more convenient to calculate the square of the distance. Squaring Equation

(31) and grouping terms yields:

2 2
0 0

2
0 0 0 0 0 0 0 0

2 2

 + 2 2

T T T T

T T T T T T

d t t st

s s

a a a a a b a b

b b b a b b a a a b b b
 (32)

The coefficients of Equation (32) are scalar values. Let

 43

0 0

0 0

0 0 0 0 0 0

2

2

2

2

T

T T

T

T T

T

T T T

A

B

C

D

E

F

a a

a a a b

a b

b b b a

b b

a a a b b b

 (33)

Substituting Equation set (33) into (32) gives

 2 2 2d At Bt Cst Ds Es F (34)

Equation (34) is a parabaloid in 3
with A > 0 and E > 0. The minimum

distance for two infinite lines is found by calculating the minimum distance over

all points ,t s . This is an unconstrained optimization problem with the cost

function Y = d2 and the optimization variable x = [t, s]T or

2

2 2Minimize (,)Y t s At Bt Cst Ds Es F
x

 (35)

The minimum must satisfy both the stationary condition and convexity condition:

 *

2

2
*

0 0
Y Y

x x x x
x x

where x* are the parametric coordinates of the minimum distance between the

two lines. The stationary condition for Equation (35) is

2 0

2 0

Y At B Cs
Y t

Y
Ct D Es

s

x
 (36)

and solving for x* yields

* *

2 2

2 2

(4) (4)

AD BC BE CD
s t

C AE C AE
 (37)

 44

Likewise, the convexity condition takes the form

2 2

2 2

2 2 2

2

2

2

Y Y
A CY t st
C EY Y

s t s

x
 (38)

Equation (38) is semi-positive definite and meets the convexity condition

when 4AE- C2 ≥0. This is true for all t and s and can be seen by breaking it into

the vector components:

2

22 2

4 4()() 4()()

4 cos 0

T T T TAE C

a a b b a b a b

a b a b

It is interesting to note that a unique solution only exists when 4AE- C2≠0.

When 4AE-C2=0, the two arms are parallel and there is an infinite set of

solutions. Substituting Equation (37) into (35) gives the minimum distance

between two infinite lines.

2. Minimum Distance between Two Line Segments

While the discussion on the minimum distance between infinite lines is

useful to this problem, the minimum distance between two arm segments is a

box-constrained optimization problem:

2 2min (,)

subj to 0 t 1

 0 s 1

Y t s At Bt Cst Ds Es F

 (39)

The Lagrangian of Equation (39) is now defined as

 2 2(,) t+ s t sY At Bt Cst Ds Es Fx λ

and the first order necessary condition is

 45

min

2 0

2 0

t

s

Y At B Cs
Y t

Y
Ct D Es

s

x
 (40)

This is a more complicated problem to solve. The parametric coordinates

for the minimum distance are now functions of the Lagrange multipliers t and s.

2 2min min2 2

2 2 2 2

4 4
t s t s

d d

EB CD E C AD CB C A
t s

C AE C AE
 (41)

The Lagrange multipliers in Equation (40) and (41) must be found and

satisfy the Karush-Kuhn-Tucker (KKT) conditions:

0 0

0 for 0 1

0 1
t

t

t

t

 and

0 0

0 for 0 1

0 1
s

s

s

s

 (42)

i cannot be solved analytically in a general sense and other methods must be

used to evaluate the endpoints of the segment.

References [41] and [42] develop geometric algorithms to solve the

minimum distance between line segments which are summarized below. The

first step is to calculate 4AE- C2 to find out if the line segments are parallel. Next,

the minimum parameters t* and s* for two infinite lines that are defined by

extending the two line segments are calculated. If those values are both

between 0 and 1, then those are the coordinates of the minimum distance and

can be used to calculate d Equation (34). If t* is outside the range [0,1] and s* is

within the range, then the tmin is located at the endpoint closest to t*. Using that

endpoint condition as a constant, Equation (36) can then be solved for smin. If

smin is now outside the range [0,1] then s is set to the endpoint closest to smin and

a new tmin is computed. The reverse is also true. This approach can be applied if

the line segments are parallel and if both global minimums are outside of the

range.

 46

Figure 25 demonstrates the algorithm that can be applied to determine

parametric coordinates that define the minimum distance between two line

segments using values from Equations (33) and (37). While this algorithm

efficiently calculates the minimum distance between two static lines, it requires

nine if-then statements and is not necessarily a continuously differentiable

function over time.

If
4AE‐C2=0

t = 0
s = ‐D/2E

t = t*
s = s*

If
t < 0

If
t > 1

If
s > 1

If
s < 0

t = 1
s = C‐D/2E

If
‐B < 0

If
‐B > 2A

t = 0
s = 0

t = 1
s = 0

t = ‐B / 2A
s = 0

If
C‐B < 0

If
C‐B > 2A

t = 0
s = 1

t = 1
s = 1

t = C‐B / 2A
s = 1

tmin = t
smin = s

then

else

Figure 25. Geometric Algorithm for Min. Distance Between Line Segments.

 47

B. STATIC OBSTACLE AVOIDANCE

1. 2-DOF Case

The above algorithm was used as a path constraint to define the minimum

distance between the centerline of an arm and the centerline of a cylinder

defined by the respective endpoints. DIDO allows the path constraint to be a

function that incorporates the complexity of the geometric analysis. The problem

formulation is identical to Equation set (1515) except the added path constraint

2 2
mind d is included where d is the instantaneous distance between the arm and

the obstacle and dmin is the pre-defined obstacle avoidance distance. For the

purposes of simulation, dmin= 5 cm. The centerline of the obstacle was placed 45

cm above the base of the arm and oriented along the y axis of the Cartesian

coordinate system. Once again, an initial 16 node solution was calculated and

then used as a guess for a more refined 60 node solution in order to interpolate a

feasible control trajectory when propagating the solution using ODE45 in Matlab.

The relevant initial and final conditions of the simulation are included in Table 4.

10 = - 60° [xef, yef, zef] = [.186, .281, .483] [x1, y1, z1]obs = [-0.5, 0, .55]

20 = 45° dmin = 5 cm [x2, y2, z2]obs =[0.5, 0, .55]

Table 4. Example Endpoint Conditions for Single 2-DOF Arm with Static
Obstacle Avoidance

Figure 26a demonstrates the solution for the defined maneuver without

imposing the obstacle avoidance path constraint and using the cost function

 0

.5
ft

T
fJ t u u

As the figure illustrates, the arm passes through the centerline of the

obstacle. Figure 26b demonstrates the same maneuver with the collision

avoidance algorithm active. The trajectory of the arm changes to allow a

minimum 5 cm buffer between the arm and line. Figure 27 -Figure 29 provide the

 48

corresponding state and control trajectories, the costate values over time, the

Hamiltonian value, and the variation of the minimum distance between the arm

and the obstacle during the obstacle avoidance maneuver.

-0.2
0 0.2

0.4

-0.500.5
0

0.1

0.2

0.3

0.4

0.5

0.6

XY

Z

Figure 26. 2-DOF Maneuver Without and With Static Obstacle Avoidance

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

0

2

A
n

g
le

s
[r

a
d

]

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-5

0

5

R
a

te
s

[r
ad

/s
]

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

0

2

Time [sec]

C
o

n
tro

ls
 [N

 m
]

1

2

Figure 27. 2-DOF Motion with Static Obstacle Avoidance: State and Control
Trajectories

-0.2
0

0.2
0.4

-0.5
0

0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

XY

Z

[a] [b]

 49

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

C
o

st
a

te
s

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

C
o

st
a

te
s

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1

0
Pendulum w/ Base - Hamiltonian

Time [sec]

H
a

m
ilt

o
n

ia
n

V

a
lu

e

Figure 28. 2-DOF Motion with Static Obstacle Avoidance: Costate and
Hamiltonian Trajectories

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (sec)

D
is

ta
n

ce
 [m

]

Figure 29. 2-DOF Motion with Static Obstacle Avoidance: Distance between
Link and Obstacle (5 cm Buffer)

 50

2. 3-DOF Case

Similar to the 2-DOF case, the 3-DOF problem formulation is identical to

Equation Set (25) with the added complexity of the path constraint imposed to

guarantee a minimum distance between both links and the obstacle. The path

constraint for this problem includes

2 2
1min 1

2 2
2min 2

d d

d d

where di_min are the minimum distances between the obstacle and each

respective link. The joint positions must be computed at each node in time using

the kinematic model and these points define the line segments used to compute

the minimum distance.

θ10 = 80° [xef, yef, zef] = [.029, -.334, .049] [x1, y1, z1]obs = [-1, 0, 0.4]

20 = 45° d1min = 0.05 m [x2, y2, z2]obs = [1, 0, 0.4]

θ20 = 0° d2min = 0.05 m

Table 5. Example Endpoint Conditions for Single 3-DOF Arm with Static
Obstacle Avoidance

Figure 30a demonstrates the minimum time solution for the above

maneuver without the obstacle avoidance algorithm. As the figure illustrates, the

arm passes through the centerline of the line used to model the obstacle. Figure

30b demonstrates the same maneuver with the collision avoidance algorithm

active. The trajectory of the arm changes to allow a minimum 5 cm buffer

between the arm and static cylinder. The maneuver time for both simulations

was 1.22 seconds. The difference in the trajectory can be attributed to the

weighted quadratic cost function. Figure 31 - Figure 33 are plots of the solution

trajectories. Of particular interest are the Hamiltonian and λ1 that still satisfy the

necessary condition derived in the original 3-DOF case.

 51

-0.2
0

0.2
0.4

-0.5
0

0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

X
Y

Z

-0.2
0

0.2
0.4

-0.500.5
0

0.1

0.2

0.3

0.4

0.5

0.6

XY

Z

Figure 30. 3-DOF Maneuver Without and With Static Obstacle Avoidance: 60
Node Solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

0

2

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-5

0

5

A
n

g
ul

a
r

V
e

lo
ci

ty

[r
a

d/
se

c]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

Time [sec]

C
on

tr
o

l i
n

p
u

t
[N

 m
]

1

2

3

1

2

3

1

2

3

Figure 31. 3-DOF Motion with Static Obstacle Avoidance: State and Control
Trajectories

[a] [b]

 52

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

C
o

st
a

te
s

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

C
o

st
a

te
s

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1

0

Time [sec]

H
a

m
ilt

o
n

ia
n

V

a
lu

e

Figure 32. 3-DOF Motion with Static Obstacle Avoidance: Costates and
Hamiltonian

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3
Distance Between Link A and Obstacle

Time [sec]

D
is

ta
n

ce
 [m

]

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3
Distance Between Link B and Obstacle

Time [sec]

D
is

ta
n

ce
 [m

]

Figure 33. 3-DOF Motion with Static Obstacle Avoidance: Distance between
Links and Obstacle

In applying the PS based obstacle avoidance algorithm, one must note

that the numerical solution, uses discrete times or nodes to calculate the state

and control trajectories and the path constraints are only tested and guaranteed

at each of these nodes. A low node solution, while feasible at each discrete

 53

node, may not to be physically realizable. Figure 34 and Figure 35 illustrate a

16- node solution for the same problem. The nodal spacing in these cases is

such that the trajectory seems to jump the obstacle, that is the path constraints

are met at the two nodes on either side of the obstacle as shown in Figure 35 but

the arm trajectory would collide with the obstacle as it proceeds from one node to

the next. The possibility of nodal jumping requires that the computed trajectory

be analyzed to ensure it is feasible and may necessitate increasing the number

of nodes, and therefore, the computational time to find a feasible solution.

-0.20
0.20.4

-0.500.5
0

0.1

0.2

0.3

0.4

0.5

0.6

XY

Z

Figure 34. 3-DOF Motion with Static Obstacle Avoidance: 16 Node Solution

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3
Distance Between Link A and Obstacle

Time [sec]

D
is

ta
n

ce
 [m

]

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3
Distance Between Link B and Obstacle

Time [sec]

D
is

ta
n

ce
 [m

]

Figure 35. Minimum Distance Between Links and Obstacle,16 Node Solution

 54

C. NUMERICALLY SOLVING THE KKT CONDITIONS

Returning to the discussion of minimum distance between line segments,

solving Equation (41) should produce the minimum distance parametric

coordinates. While this equation cannot be solved analytically, it can be solved

numerically using DIDO.

 Taking a step back to basic optimality, the constraints on the variables

can be rewritten in the form y(x) ≤ 0 where y is a vector of constraint functions.

2 2minimize (,)

subj to - 0 - 0

1 0 1 0

Y t s At Bt Cst Ds Es F

t s

t s

Taking the Lagrangian of the cost function yields a new optimization

problem.

2 2
1 2 1 2minimize (,) (-1) + (1)

subj to 0

0

t t s s

T

Y At Bt Cst Ds Es F t t s sx λ

λ

λ y

Rewriting Equation (40) using the new Y gives

1 2

min
1 2

2 0

2 0

t t

s s

Y At B Cs
Y t

Y
Ct D Es

s

x
 (43)

with the constraints

1 1

2 2

() 0 () 0

(1) 0 (-1) 0
t s

t s

t s

t s
 (44)

By letting s, t, and i be six dummy control variables for each possible

collision in the problem formulation, DIDO can numerically solve the problem with

the KKT conditions that resemble the distance between two lines. Defining the

minimum distance allowed between two arms, Equations (34), (43) and (44)

 55

specify seven path constraints that are associated with each potential collision.

While this increases the number of variables and functions, it directly solves the

original obstacle avoidance problem without geometric checks and resulting

pitfalls described by Figure 25.

1. 2-DOF Case

The motion planning problem was reformulated to include the dummy

control variables and additional path constraints for the case of two 2-DOF arms:

 1 2 3 1 2 3 1 2 1 2, , , , , , , , , , ,
Ta a a b b b

t t s st s u

2 2 2
min

1 2

1 2

1

2

1

2

(), ()

0 2 0

0 2 0

0 () 0

0 (1) 0

0 () 0

0 (1) 0

L u

t t

s s

t

t

s

s

d At Bt Cts Ds Es F

At B Cs

Ct D Es

t

t

s

s

h h x u h

Using DIDO, the optimal trajectory was computed by solving the distance

between the arms at each node and bounding the dummy control variables:

0 1

0 1

0 i

t

s

The results of this formulation are compared to those found using the

geometric algorithm and presented in Figure 36 and Figure 37. The state and

control trajectories are nearly identical with tf and cost differences are on the

order of 10-6. The only significant difference was the computational time. On

average, the KKT algorithm converged to a solution for the 2-DOF problems

nearly twice as fast as the geometric algorithm.

 56

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1

0

1

2

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

0

2

4

R
a

te
s

[r
a

d
/s

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

1

1.5

Time [sec]

C
o

n
tr

o
ls

 [N
 m

]

1
 (KKT)

2
 (KKT)

1
(GEO)

2
 (GEO)

Figure 36. 2-DOF Static Obstacle Avoidance: State and Control Trajectories
(KKT Algorithm versus Geometric Algorithm)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1.5

-1

-0.5

0

Time [sec]

H
a

m
ilt

o
ni

a
n

V
a

lu
e

KKT algorithm
Geometric algorithm

Figure 37. 2-DOF Static Obstacle Avoidance: Hamiltonian Values (KKT
Algorithm versus Geometric Algorithm)

 57

2. 3-DOF Case

The 3-DOF example was also reformulated using the KKT algorithm with

an 18-element control vector, u and 14 path constraint equations. Figure 38

presents the results of this simulation. The maneuver time for both the geometric

algorithm and the KKT algorithm are the same to within 10-3 at 1.221 seconds.

Both functions used a cost function of the form

0

.1
ft

T
fJ t u u

(45)

The difference in cost between the two algorithms was 0.001 and may

account for the slight difference in 2 and 3 trajectories. The Hamiltonian

presented in Figure 39 corresponds to the required necessary condition, H=-1,

just as it did for the geometric algorithm. The distance between the obstacle and

the two links of the arm are presented in Figure 40.

The only major difference between the solutions for the two minimum

distance algorithms is the computational time. It is difficult to accurately assess

the runtime using DIDO because other processes are often running on the

computer and solution times vary considerably for the same problem. Typically

runtimes for a 16-node solution took 5-15 minutes regardless of the algorithm

used. In an effort to make a meaningful comparison, a previous 60 node solution

was used as an initial guess for each problem formulation. A 60 node solution

took 115 seconds to run for the KKT algorithm compared to 93 seconds for the

geometric algorithm. The trend appears that as the complexity of the problem

increases and the dimension of control vector increases, the KKT solution is

slower than the Geometric solution for the same problem.

 58

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1

0

1

2

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-6

-4

-2

0

2

A
n

g
u

la
r

V
e

lo
ci

ty
 [r

a
d

/s
e

c]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

0.4

0.6

Time [sec]

C
o

n
tr

o
l i

n
p

u
t [

N
 m

]

1
 (KKT)

2
 (KKT)

3
(KKT)

1
 (GEO)

2
 (GEO)

3
(GEO)

Figure 38. 3-DOF Static Obstacle Avoidance: State and Control Trajectories
(KKT Algorithm versus Geometric Algorithm)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1.5

-1

-0.5

0

Time [sec]

H
a

m
ilt

o
n

ia
n

 V
a

lu
e

KKT Algorithm
Geometric Algorithm

Figure 39. 3-DOF Static Obstacle Avoidance: Hamiltonian Values (KKT
Algorithm versus Geometric Algorithm)

 59

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

Distance Between Link A and Obstacle

Time [sec]

D
is

ta
n

ce
 [m

]

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

Distance Between Link B and Obstacle

Time [sec]

D
is

ta
n

ce
 [m

]

KKT Algorithm
Geometric Algorithm

Figure 40. Minimum Distance Between Links and Obstacle (KKT Algorithm
versus Geometric Algorithm)

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

 IV. COOPERATIVE PLANNING USING PS METHODS

The implementation of the obstacle avoidance algorithm in Chapter III

demonstrates that pseudospectral techniques are capable of solving a range of

problems. While the model was specific to an arm and a static cylinder-type

object, the next step is to implement the same concept to find an optimal path to

more complex systems. As part of this research, one interesting problem is to

solve the optimal control trajectory of a multiple arm system where the arm links

are modeled as line segments. Path planning for two arms has already been

presented in Chapter II. Adding the path constraints from the obstacle avoidance

algorithms presented in Chapter III allows for cooperative or, at the least,

simultaneous control of a system of arms. Two examples are presented below

using the dual arms that detail optimal path planning for 2-DOF and 3-DOF

motions.

A. DUAL 2-DOF MANIPULATORS

The dual 2-DOF arm cooperative planning problem is a straight forward

modification of the static obstacle formulation. The obstacle is now each link of

the other arm. The minimum distance between the links of the two arms can be

computed for any given time using either of the algorithms presented in Chapter

III and can be constrained to be greater than some preset distance. Table 6

presents the endpoint conditions used to define the problem.

Arm a Arm b
0

1

0
2

60

60

a

a

0.337

0.02

0.483

af
e

af
e

af
e

x

y

z

0
1

0
2

0

45

b

b

0.102

0.084

0.559

bf
e

bf
e

bf
e

x

y

z

Table 6. 2-DOF Cooperative Path Planning Endpoint Conditions

 62

The two arms were offset by 0.30 m along the y axis and the final

coordinates of the end-effector were chosen based on angles 1 = 0° and 2= 45°

for Arm a and 1 = -60° and 2 = 60° for Arm b. DIDO was used to solve the

problem with thecost function from Equation (45). The path constraint uses the

endpoints of the arm links at each “node” to compute the distance between the

arms and was constrained to be above some minimum distance dmin.

The optimal maneuver for this particular setup with no obstacle avoidance

algorithm dmin= 0 has a closest point of approach of 10 cm and takes 0.75

seconds to complete. Figure 41 shows such unconstrained optimal state

trajectory and Figure 42 is the minimum distance between the arms throughout

the maneuver. For this maneuver, J=0.968.

0 0.2 0.4 0.6 0.8
-1.5

-1

-0.5

0

0.5

1

1.5
Arm a

A
n

gl
e

s
[r

a
d

]

1

2

0 0.2 0.4 0.6 0.8
-4

-3

-2

-1

0

1

R
at

e
s

[r
a

d
/s

]

Time [sec]

1

2

0 0.2 0.4 0.6 0.8
-1.5

-1

-0.5

0

0.5

1

1.5
Arm b

A
n

gl
e

s
[r

a
d

]

1

2

0 0.2 0.4 0.6 0.8
-4

-3

-2

-1

0

1

R
at

e
s

[r
a

d
/s

]

Time [sec]

1

2

Figure 41. 2-DOF Cooperative Path Planning with No Obstacle Avoidance:
State Trajectory

 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

Time [sec]

D
is

ta
n

ce
 [m

]

Figure 42. 2-DOF Cooperative Path Planning with No Obstacle Avoidance:
Distance between Arms

-0.5
0 0.5 -0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

Z

-0.5

0
0.5 -0.5

0
0.50

0.1

0.2

0.3

0.4

0.5

0.6

Z

-0.5 0 0.5 -0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

X

Z

-0.5

0 0.5
-0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

X
Y

Z

Figure 43. Cooperative Path Planning for Dual 2-DOF Arms with 19.5 cm
Minimum Clearance

 64

If 10 cm is not sufficient for the arms to avoid colliding it is imperative to

modify the problem and define a more restrictive dmin. For the maneuver with the

above endpoint conditions, the maximum buffer distance between the arm links

is 19.7 cm. The following example uses the same endpoint conditions; however,

dmin was given as 19.5 cm. DIDO was run using both the geometric and KKT

collision avoidance algorithms with similar results. Figure 43 depicts the arms at

four points along the computed path. A red line is attached to the points on each

arm where the minimum distance between the arms occur. While not clear in the

plots, that minimum distance line is perpendicular to both arms. Figure 44 -

Figure 47 show results using the geometric algorithm for obstacle avoidance.

0 0.2 0.4 0.6 0.8
-1.5

-1

-0.5

0

0.5

1

1.5
Arm 1

A
n

g
le

s
[r

a
d

]

1

2

0 0.2 0.4 0.6 0.8
-4

-2

0

2

R
a

te
s

[r
a

d
/s

]

Time [sec]

1

2

0 0.2 0.4 0.6 0.8
-1.5

-1

-0.5

0

0.5

1

1.5
Arm 2

A
n

g
le

s
[r

a
d

]

1

2

0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

R
a

te
s

[r
a

d
/s

]

Time [sec]

1

2

Figure 44. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: State Trajectories

 65

0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

Time [sec]

C
o

n
tr

o
ls

 [N
 m

]

1

2

0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

Time [sec]

C
o

n
tr

o
ls

 [N
 m

]

1

2

Figure 45. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: Control Trajectories

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

Time [sec]

H
a

m
ilt

o
n

ia
n

 V
a

lu
e

Figure 46. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: Hamiltonian Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

X: 0.3976
Y: 0.195

Time [sec]

D
is

ta
n

ce
 [m

]

Figure 47. 2-DOF Cooperative Path Planning using Geometric Algorithm and
19.5 cm Buffer: Minimum Distance between Arms

 66

Compared to the case with no obstacle avoidance, the total cost of the

dynamic optimization problem for the optimal path maneuver including a 19.5 cm

buffer was found to be J=1.067, a 10% increase. The maneuver time also

increased to 0.82 seconds and the weighted quadratic cost increased by .02

units. The only substantial difference between the KKT algorithm and the

geometric algorithm was the computational time to converge to a solution. On

average, the KKT formulation was greater than twice as fast as the geometric

algorithm. Using a 60-node solution with a previously computed 60-node guess,

the KKT algorithm took 11.9 seconds to solve versus 35 seconds for the

geometric algorithm.

B. DUAL 3-DOF MANIPULATORS

The multiple 3-DOF robotic arm obstacle avoidance problems are more

complicated. The multiple time-optimal paths for each arm plus the nearly infinite

obstacle avoidance paths make this an interesting, but challenging problem.

While the algorithms presented to this point are theoretically capable of solving

the problem, the number of potential collisions create more complex path

functions. For this 3-DOF, dual arm system, there are six potential collisions that

must be accounted for vice one in the relatively simple 2-DOF system above. In

the case of the KKT algorithm, this results in 42 path constraints and 36 “dummy”

control variables that compute the distance between any two links. Table 7

summarizes the endpoint constraints used for this simulation.

Arm A Arm B
0

1

0
2

0
3

45

45

45

a

a

a

0.435

0.030

0.270

af
e

af
e

af
e

x

y

z

0
1

0
2

0
3

90

45

0

b

b

b

0.435

0.330

0.270

bf
e

bf
e

bf
e

x

y

z

Table 7. 3-DOF Cooperative Path Planning Endpoint Conditions

 67

For this example, 0f
i was used to compute the final endpoint position

in Table 7 for both arms to ensure the feasibility of the final condition. Arm B was

placed 30 cm from Arm A in the –y direction with the same 3-DOF limits from

Equation set (25). As was presented in the 2-DOF case, Figure 48 and Figure

49 present the results with dmin=0. The closest approach occurred between the

manipulator links of the two arms (Link 3 in Figure 49) when they come within 1.6

cm.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
 Arm A

A
n

g
le

s
[r

a
d

]

1

2

3

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

A
n

g
u

la
r

V
e

lo
ci

ty
 [r

a
d

/s
e

c]

1

2

3

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2
 Arm B

A
n

g
le

s
[r

a
d

])

1

2

3

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

A
n

g
u

la
r

V
e

lo
ci

ty
 [r

a
d

/s
e

c]

1

2

3

Figure 48. 3-DOF Path Planning without Obstacle Avoidance: State
Trajectories

 68

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 2 & Arm B Link 2

D
is

ta
n

ce
 [m

]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 2 & Arm B Link 3

D
is

ta
n

ce
 [m

]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 3 & Arm B Link 2

D
is

ta
n

ce
 [m

]

Time [sec]
0 0.5 1

0

.08

.16

.24

.32

.40
Arm A Link 3 & Arm B Link 3

D
is

ta
n

ce
 [m

]

Time [sec]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 3 & Arm B Link 1

D
is

ta
nc

e
 [m

]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 1 & Arm B Link 3

D
is

ta
nc

e
 [m

]

Figure 49. 3-DOF Path Planning without Obstacle Avoidance: Distance
between Links

One of the advantages of using DIDO is the ease in which the problem

can be designed. For example, the buffer distance can be tailored for each

potential collision based on the physical dimensions of each link. In this case,

each link was assumed to be the same width and dmin= 8 cm for all six potential

collisions. DIDO was run using an initial three-point guess for a 16-node solution

and then a bootstrap approach for subsequent iterations. The middle point of

this guess was nominally chosen so that both arms would orient vertically with 1

at the midpoint the same as 10. Intuitively, raising the arms to vertical before the

d=5.8 cm

d=1.6 cm

 69

base turns would create separation and provide the arms with an obstacle free

path in most cases. In general, this was found to reduce the computation time.

Figure 50 sketches the 60-node optimal path of both arms computed by DIDO

with an dmin = 8 cm. The obstacle avoidance maneuver took the same time as

the the case with dmin = 0 cm, 10-8 seconds, with an increase in the quadratic cost

of 3.5%. Figure 51 -Figure 53 display the state and control trajectories, costate

values, and Hamiltonian values computed by DIDO.

-0.2 0 0.2 0.4 0.6 -0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

Z

-0.2 0 0.2 0.4 0.6
-0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

Z

-0.2 0 0.2 0.4 0.6-0.5

0

0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

X

Z

Y

-0.2 0 0.2 0.4 0.6-0.5

0

0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

X
Y

Z

Figure 50. Cooperative Path Planning for Dual 3-DOF Arms with 8 cm Buffer

 70

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2
 Arm A

A
n

g
le

s
[r

a
d

]

1

2

3

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

A
n

g
u

la
r

V
e

lo
ci

ty
 [r

a
d

/s
e

c]

Time [sec]

1

2

3

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2
 Arm B

A
n

g
le

s
[r

a
d

]

1

2

3

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

A
n

g
u

la
r

V
e

lo
ci

ty
 [r

a
d

/s
e

c]

Time [sec]

1

2

3

Figure 51. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: State Trajectories

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
 Arm A

Time [sec]

C
o

n
tro

l t
o

rq
ue

 [N
 m

]

1

2

3

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
 Arm B

Time [sec]

C
o

n
tr

ol
 in

p
ut

1

2

3

Figure 52. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Control Trajectories

 71

0 0.2 0.4 0.6 0.8 1
-0.02

-0.01

0

0.01

0.02
Arm A

C
o

st
a

te
s

1

2

3

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2
x 10

-3

C
o

st
a

te
s

Time [sec]

1

2

3

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6
Arm B

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

Time [sec]

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

Time [sec]

H
a

m
ilt

o
n

ia
n

 V
a

lu
e

Figure 53. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Costate and Hamiltonian Values

While the Hamiltonian value is constant at -1 from Figure 53, the value for

1 for Arm A does not appear to be constant and steps up at the midpoint of the

maneuver. Changing the scale of the chart and plotting the Arm B 1 values on

top of the Arm A 1 shows that this step up is of the same order of magnitude as

the oscillations in the other costate values due to numerical computation errors

seen in Figure 54. Figure 55 illustrates that the avoidance algorithm does

provide the required buffer of 8 cm between the links.

 72

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

C
o

st
a

te
s

Time [sec]

Arm A 1

Arm B 1
 -.3

Figure 54. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: 1 Plot

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 2 & Arm B Link 2

D
is

ta
n

ce
 [m

]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 2 & Arm B Link 3

D
is

ta
n

ce
 [m

]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 3 & Arm B Link 2

D
is

ta
n

ce
 [m

]

Time [sec]
0 0.5 1

0

.08

.16

.24

.32

.40
Arm A Link 3 & Arm B Link 3

D
is

ta
n

ce
 [m

]

Time [sec]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 3 & Arm B Link 1

D
is

ta
nc

e
 [m

]

0 0.5 1
0

.08

.16

.24

.32

.40
Arm A Link 1 & Arm B Link 3

D
is

ta
nc

e
 [m

]

Figure 55. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Distance between Arms

 73

To ensure feasibility of the solution, the DIDO computed control trajectory

was linearly interpolated and used to propagate the system using Matlab’s

ODE45 function and a fixed time step of 0.05 seconds. The results of the

propagated states, shown in Figure 56, verify the feasibility of the control

solution. The KKT algorithm was also run using the endpoint constraints from

Table 7 with nearly identical results to the geometric algorithm. Figure 57

compares the two state trajectories and Figure 58 plots the costate values that

correspond well with the geometric algorithm shown in Figure 53.

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1
 Arm A

A
n

g
le

s
(r

a
d

)

0 0.2 0.4 0.6 0.8
-4

-3

-2

-1

0

1

2

3

A
n

g
u

la
r

V
e

lo
ci

ty
 (

ra
d

/s
e

c)

Time [sec]

0 0.2 0.4 0.6 0.8

-0.5

0

0.5

1

1.5

2
Arm B

A
n

g
le

s
(r

a
d

)

0 0.2 0.4 0.6 0.8
-4

-3

-2

-1

0

1

2

3

A
n

g
u

la
r

V
e

lo
ci

ty
 (

ra
d

/s
e

c)

Time [sec]

1

2

3

1

2

3

Figure 56. 3-DOF Cooperative Path Planning using Geometric Algorithm and
8 cm Buffer: Propagated State Values (o) compared with DIDO values (-)

 74

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1

1.5

2
 Arm A

A
n

g
le

s
[r

a
d

]

0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

3

A
n

g
u

la
r

V
e

lo
ci

ty
 [r

a
d

/s
e

c]

Time [sec]

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1

1.5

2
 Arm B

0 0.2 0.4 0.6 0.8
-4

-2

0

2

4

Time [sec]

1
 (GEO)

2
 (GEO)

3
 (GEO)

1
 (KKT)

2
 (KKT)

3
 (KKT)

1
 (GEO)

2
 (GEO)

3
 (GEO)

1
 (KKT)

2
 (KKT)

3
 (KKT)

Figure 57. 3-DOF Cooperative Path Planning: State Trajectory (KKT Algorithm
versus Geometric Algorithm)

0 0.2 0.4 0.6 0.8
-0.02

-0.01

0

0.01

0.02
Arm A

C
o

st
a

te
s

1

2

3

0 0.2 0.4 0.6 0.8
-0.02

-0.01

0

0.01

C
os

ta
te

s

Time [sec]

1

2

3

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

Arm B

0 0.2 0.4 0.6 0.8
-0.2

-0.1

0

0.1

0.2

Time [sec]

Figure 58. 3-DOF Cooperative Path Planning using KKT Algorithm: Costate
Values

 75

While the solution paths between the KKT and geometric algorithms are

similar, two differences are worth pointing out. Using the KKT algorithm, DIDO

computed a cost function that was 7% lower than when it used the geometric

algorithm. Since the final maneuver time was the same to 10-8 seconds, the

difference corresponds to a 21% decrease in the quadratic cost. While the KKT

algorithm seems to converge to a better cost function, a computational price is

paid. On average DIDO took three times longer to converge to a solution using

the KKT algorithm than using the geometric algorithm. The fact that the KKT

algorithm converges to a slightly lower cost solution infers that the geometric

algorithm may not be as accurate for complex systems and the KKT algorithm

may be more robust.

Whether this computational penalty can be alleviated is an interesting path

for future work. In general, with the 3-DOF problems visited in this work, the

costate values were an order of magnitude smaller than the corresponding state

values. This brief comparison may indicate that the problem can be better scaled

and balanced using some unknown designer units, which would allow the

pseudospectral method employed by DIDO to converge faster to a more

accurate optimal solution.

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

V. CONCLUSION AND RECOMMENDATIONS

Application of pseudospectral methods for motion planning of multiple

mulit-DOF robotic manipulators was studied. The use of DIDO for obtaining

optimal trajectories allowed the focus of effort to be placed on the problem

formulation instead of solving the optimal control problem. Rather than starting

with a complex problem that incorporates trajectory planning and obstacle

avoidance, a staged approach was found to be an effective means of developing

the final optimal control problem formulation. First, a relatively simple 2-DOF

problem was formulated and solved with all the necessary conditions for

optimality derived and verified. Building on this basic problem formulation, the

complexity of the system was increased to 3-DOF and then with the addition of a

second robotic manipulator a 6-DOF system. Pseudospectral techniques were

effective in quickly solving optimal pick-and-place paths. While not trivial, the

addition of higher DOF arms and increasing the number of arms can be

accomplished relatively simply within the pseudospectral framework.

The choice of cost function is an important element that has a major effect

on the ultimate solution. While a minimum time trajectory is desired, some level

of efficiency should be included, particularly when dealing with decoupled

elements, or even lightly coupled elements as is often the case with multiple links

and arms. A weighted cost function that includes both a minimum time element

and a measure of minimizing effort is desirable. Once again, the use of DIDO

allows the problem formulation to be flexible and easily accommodate a wide

range of cost functions based on the mission objectives.

Even the relatively simple model of a robotic arm using rigid links and

perfect joints had a fairly complex form. A higher fidelity model that includes joint

parameters and system flexibility can be substituted in for the dynamics of the

system. While the level of effort to model the system would surely increase, the

optimal control framework may exploit the more complex interactions to find a

solution that increases the performance of the system.

 78

Obstacle avoidance was included by defining path constraints that

consisted of the minimum distance between the manipulators’ links. Using

parametric equations to define each link, an optimization problem was formulated

and simultaneously solved to determine the minimum distance between each link

and any potential obstacle. Two techniques are presented that take advantage

of the flexibility of problem formulation in DIDO. The results suggest that for

higher order systems, the geometric function for finding the minimum distance

converges faster when provided a feasible guess. The algorithm based on

numerically solving the KKT conditions seems to be better behaved and solves a

low-node problem with a simple two-point guess more reliably. As the complexity

of the system increases, the robustness of the KKT algorithm can be used to

solve a low node solution, which can then be used as a guess for the geometric

algorithm to refine the trajectory with less computation time. The refined control

solution can then be interpolated and used for a physical implementation.

 As implemented, the use of the proposed obstacle avoidance techniques

requires knowledge of all obstacles in the workspace. It also assumes that each

link in the system is modeled as a line, which may not be ideal for some systems.

Further efforts can be placed into modifying the parametric distance function for

complex shapes.

By not having to focus on an analytical solution to the optimal control

problem, variations in problem formulation can be explored. Being able to

compare the results of different problem formulations may result in the discovery

of computational efficiencies. Here, no scaling was done on any variables. By

experimenting with designer units, the computation time to solve the problem can

be improved with no change in the physical trajectory. Another variation not

considered in this study is the use of the links’ minimum distance function in the

cost as a pseudo-repulsive force or penalty function.

 While the robotic manipulators studied here are relatively simple, the

techniques presented can be used to solve more complicated problems that just

a few years ago were considered unsuitable for real-time use [5]. Collision

 79

avoidance and trajectory planning for cooperating arms using pseudospectral

methods can also be studied for real-time autonomous implementation provided

computational efficiencies are exploited.

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX - 2-DOF ARM DYNAMICS COMPUTATION

* Courtesy of Dr. Mark Karpenko, Guidance and Control Laboratory,

Naval Post Graduate School, Monterey, CA.

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

LIST OF REFERENCES

[1] D. W. Johnson, and E. G. Gilbert, “Minimum Time Robot Path Planning in

the Presence of Obstacles,” Proceedings of the 24th Conference on
Decision and Control. Ft. Lauderdale, FL, December 1985, pp. 1748-
1753.

[2] O. von Stryk and M. Schlemmerm “Optimal control of the industrial robot
Manutec R3,” International Series of Numerical Mathematics, 115 (Basel:
Birhauser, 1994), pp. 367-382.

[3] M. C. Steinbach, H. G. Bock, G. V. Kostin, and R. W. Longman,
“Mathematical optimization in robotics: Towards automated high speed
motion planning,” Surveys on Mathematics for Industry, vol. 7 no. 4, pp.
303-340, 1998.

[4] NASA, “Space Shuttle Photo Gallery,” http://www.nasa.gov/mission
_pages/shuttle/behindscenes/rms_gallery.html.

[5] A.B. Bosse et al., “SUMO: spacecraft for the universal modification of
orbits.” Proceedings of SPIE, vol. SPIE-5419, pp. 36-46, 2004.
http://projects.nrl.navy.mil/sumo/whitePapers/SUMOPaperSPIE5419-
7_29Mar04_ver2.doc.

[6] B. K. Kim and K. G. Shin, “Minimum-time path planning for robot arms and
their dynamics,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-15, no. 2, pp. 213-223, March/April 1985.

[7] H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and
Implementaion. Cambridge: The Massachusetts Institute of Technology
Press, 2005.

[8] T. Chettibi, H. E. Lehtihet, M. Haddadm and S. Hanchi, “Minimum cost
trajectory planning for industrial robots,” European Journal of Mechanics
and Solids, vol. 23, pp. 703-715, 2004.

[9] I. M. Ross, Control and Optimization: An introduction to Principles and
Applications, Electronic Edition, Naval Postgraduate School, Monterey,
CA, December, 2005.

[10] K. G. Shin and N. D. McKay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE Transactions on
Automatic Control, vol. AC-30, no. 6., pp. 531-541, June 1985.

[11] B. J. Martin and J. E. Bobrow, “Minimum-effort motions for open-chain
manipulators with task-dependent end-effector constraints,” The
International Journal of Robotics Research, vol. 18 no. 2, pp. 213-224 ,
February 1999.

 100

[12] S. F. P. Saramago and V.S. Junior, “Optimal trajectory planning of robot

manipulators in the presence of moving obstacles,” Mechanism and
Machine Theory, vol. 35, pp. 1079-1094, 2000.

[13] T. Chettibi, “Synthesis of dynamic motions for robotic manipulators with
geometric path constraints,” Mechatronics, vol. 16, pp. 547-563, 2006

[14] B. Faverjon and P. Tournassoud, “A local based approach for path
planning of manipulators with a high number of degrees of freedom,”
1987 IEEE International Conference on Robotics and Automation.
Proceedings, Vol. 4, March 1987, pp. 1152-1159.

[15] J. E. Bobrow et al. “Optimal robot motions for physical criteria,” Journal of
Robotic Systems, vol. 18, no. 12, pp. 785-795, 2001.

[16] B. Faverjon and P. Tournassoud, “A local based approach for path
planning of manipulators with a high number of degrees of freedom,”
1987 IEEE International Conference on Robotics and Automation.
Proceedings, Vol. 4, March 1987, pp. 1152-1159.

[17] Z. Shiller, and H. H. Lu, “Computation of path constrained time optimal
motions of robotic manipulators in the presence of obstacles,” IEEE
Transactions on Robotics and Automation, vol. 7, no. 6, pp. 785-797,
December, 1991.

[18] L. Pontryagin, V. Boltayansky, R. Gamkrelitze, and E. Mishchenko, The
Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

[19] R. Callies and P. Rentrop, “Optimal Control of Rigid-Link Manipulators by
Indirect-Methods,” GAMM-Mitteilungen, vol. 31, no. 1, pp. 27-58, 2008.

[20] J. Vannoy and J. Xiao, “Real-time adaptive and trajectory optimized
manipulator motion planning,” Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, September
28 – October 2, 2004, Sendai, Japan, pp. 497-502.

[21] N. Sadati and A. Babazadeh, “Optimal control of robot manipulators with a
new two-level gradient-based approach,” Electrical Engineering, vol. 88,
pp. 383-393, 2006.

[22] F. Fahroo, I. M. Ross, “On Discrete-Time Optimality Conditions for
Pseudospectral Methods,” AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, 21 - 24 August 2006, Keystone, Colorado.

[23] J. Strizzi, I. M. Ross, and F. Fahroo, “Towards real-time computation of
optimal controls for nonlinear systems,” AIAA Guidance, Navigation, and
Control Conference and Exhibit, Monterey, CA, 5-8 August 2002.

 101

[24] Z. Bien and J. Lee, “A minimum-time trajectory planning method for two

robots,” IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp.
414-418, June 1992.

[25] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,” International Journal of Robotics
Research, vol. 24, no. 4, pp. 295-310, April, 2005.

[26] L. R. Lewis, Rapid Motion Planning and Autonomous Obstacle Avoidance
for Unmanned Vehicles, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, December 2006.

[27] M. A. Hurni, P. Sekhavat, P., and I. M. Ross, “Autonomous Trajectory
Planning Using Real-Time Information Updates,” AIAA Guidance,
Navigation and Control Conference and Exhibit, Honolulu, Hawaii, August
18-21, 2008.

[28] E. G. Gilbert and D. W. Johnson, “Distance Functions and their
Application to Robot Path Planning in the Presence of Obstacles.” IEEE
Journal of Robotics and Automation, vol. 1, No. 1, March 1985, pp. 21-30.

[29] R. R. dos Santos, V. S. Stefffen Jr., and S. de F. P. Saramago, “Robot
path planning in a constrained workspace by using optimal control
techniques,” Multibody System Dynamics, vol. 19, pp. 159-177, 2008.

[30] A. K. Bejczy and R. P. Paul, “Simplified Robot Arm Dynamics for Control,”
Conference on Decision and Control, 20th, and Symposium on Adaptive
Processes, San Diego, CA. December, 1981, pp. 16-18.

[31] J. S. Hesthaven, J. S., Gottlieb, S. and Gottlieb, D., Spectral Methods for
Time-Dependent Problems, Cambridge University Press, 2007.

[32] Q. Gong, W. Kang, N. Bedrossian, F. Fahroo, F., P. Sekhavat, and K.
Bollino, “Pseudospectral Optimal Control for Military and Industrial
Applications,” 46th IEEE Conference on Decision and Control, New
Orleans, LA, pp. 4128-4142, Dec. 2007.

[33] I. M. Ross, Q. Gong, and P. Sekhavat, “Low-Thrust, High-Accuracy
Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, vol.
30, 2007, pp. 921-933.

[34] Cyton Alpha 7D1G Operations Manual. Robai, 2008. ftp:///ftp.energid.info/
outgoing/cyton/CytonSetup_v1.1.exe.

[35] L. Tsai, Robot Analysis: The Mechanics of Serial Manipulators and
Parallel Manipulators. New York: John Wiley & Sons, 1999.

[36] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control. New York:
John Wiley & Sons, 1989.

 102

[37] M. S. Mahmoud, “Robust Control of Robot Arms including Motor

Dynamics,” International Journal of Control, vol. 58, no. 4, 1993, pp. 853-
873.

[38] Q. Gong, F. Fahroo, and I. M. Ross, “Spectral Algorithm for
Pseudospectral Methods in Optimal Control,” Journal of Guidance,
Control, and Dynamics, vol. 31, no 3, May-June 2008, pp. 460-471.

[39] S. Fortune, G. Wilfong, and C Yap, “Coordinated motion of two robot
arms,” in 1986 IEEE International Conference on Robotics and
Automation Proceedings, vol. 3, April 1986, pp. 1216-1223.

[40] K. Sun, and V. Lumelsky, “Path planning among unknown obstacles: The
case of a three-dimensional Cartesian arm,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 6, pp. 776-786, December 1992.

[41] V. J. Lumelsky, “On Fast Computation of Distance Between Line
Segments,” Information Processing Letters 21, pp. 55-61, August 1985.

[42] D. Sunday, “Distance Between Lines and Segments With Their Closest
Point of Approach,” September 2008, http://geometryalgorithms.com/
Archive/algorithm_0106/algorithm_0106.htm.

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

